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Abstract

This paper examines natural convection in the shallow annular gap between two concentric circular cylinders.

Asymptotic solutions are obtained in the limit as the aspect ratio � (defined as the ratio of the enclosure height to the

gap width) goes to 0. It is shown that the solution at Oð�nÞ can only be completely specified by examining the governing

equations at Oð�nþ2Þ. Solutions are obtained, and Nusselt number correlations are presented, when the dimensionless

radius of the inner cylinder d is of Oð1=�Þ and when d is of Oð1Þ. The results indicate that curvature effects profoundly

influence the nature of convection in shallow annular enclosures. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cormack, Leal and Imberger [1] (hereafter referred

to as CLI) used asymptotic analysis to examine natural

convection in a shallow rectangular cavity due to dif-

ferentially heated end walls. In particular, CLI examined

the case where the upper and lower boundaries were

perfectly insulating and where the height of the cavity

was much less than the distance between the hot and

cold end walls. CLI showed that the flow can be divided

into a central core region and two end zone regions. In

the central core the flow is parallel with fluid travelling

towards the cold end wall in the upper half of the cavity

and fluid travelling towards the hot wall in the lower half

of the cavity. The flow is symmetrically turned through

180� in the approximately square end zone regions. At

leading order, CLI showed that the temperature varies

linearly between the hot and cold end walls. The key

features of the asymptotic analysis performed by CLI

has been verified numerically [2] and experimentally [3].

The purpose of this paper is to extend the analysis of

CLI to the case of convection in a shallow annular gap

between two concentric circular cylinders maintained at

different temperatures. The objective is to examine the

influence of curvature on the nature of convection in

shallow enclosures. The term curvature is used here to

highlight the fact that in a cylindrical annulus the heat

transfer area increases in proportion to the radius when

moving from the inner cylinder to the outer cylinder,

whereas in a rectangular cavity the heat transfer area is

constant when moving from the hot end wall to the cold

end wall. It has previously been noted by de Vahl Davis

and Thomas [4] that curvature effects strongly influence

the nature of convection in tall cylindrical annuli.

Merker and Leal [5] (hereafter referred to as ML)

were the first to examine natural convection in shallow

cylindrical annuli. They suggested this as a model for the

circulation patterns in shallow lakes resulting from a

localized source of heat. ML used the same techniques

as CLI and examined the convection by dividing the

domain into a central core region and two end zone

regions near the inner and outer cylinders. During the

course of their analysis, ML make various assumptions

based on the results obtained by CLI. Not all of the

assumptions made by ML are valid, however, and a

revised version of the asymptotic analysis for natural

convection in shallow cylindrical annuli is presented in

this paper.

2. Mathematical model

A cross-section of the annular enclosure considered

in this paper is given in Fig. 1. The radius of the inner

cylinder is r1 and the radius of the outer cylinder is

r2 ¼ r1 þ ‘. The height of the enclosure is h and the as-

pect ratio is � ¼ h=‘. For the shallow enclosures of in-

terest here � � 1. A measure of curvature in the annular

gap is given by C ¼ r1=‘, and as C ! 1 the annular gap

approaches the two-dimensional cavity studied by CLI.
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A third geometric parameter of the enclosure is d ¼ r1=h
which is related to � and C by C ¼ �d. The inner cylinder

is maintained at a constant temperature T1 and the outer

cylinder is maintained at a constant temperature T2 and

it is assumed that T2 > T1. The top and bottom bound-

aries are assumed to be perfectly insulating and all sur-

faces are rigid no slip boundaries. The flow is assumed to

be axisymmetric.

The governing equations are the Boussinesq form of

the Navier–Stokes equations, along with the continuity

equation and a conservation of thermal energy equation.

The steady-state form of these equations in cylindrical

coordinates is given by
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In the above, u� and v� are the radial and axial velocities,

respectively, T � is temperature, P � ¼ p� 	 q0gz
� is the

reduced pressure where p� is the thermodynamic pres-

sure, q0 is the reference density, and g is the acceleration

due to gravity. The reference density has been chosen to

Nomenclature

cn, dn numerical constants when C 
 Oð1Þ
ckn, d

k
n numerical constants when d 
 Oð1Þ

cp specific heat capacity at constant pressure

Ck
n , D

k
n numerical constants when d 
 Oð1Þ

Gr Grashof number of cylindrical enclosure,

Gr ¼ gaðT1 	 T2Þh3=m2

g coefficient of gravity

h height of annular gap

k thermal conductivity

‘ distance between inner and outer cylinder,

‘ ¼ r2 	 r1
Nu Nusselt number

p� thermodynamic pressure

P � reduced pressure, P � ¼ p� 	 q0gz
�

Pr Prandtl number, Pr ¼ m=j
r dimensionless radial coordinate, r ¼ r�=h
r1ðr2Þ radius of inner (outer) cylinder

T � temperature

T1ðT2Þ temperature of inner (outer) cylinder

u dimensionless radial velocity, u ¼ u�=
ðgah3ðT1 	 T2Þ=m‘Þ

v dimensionless vertical velocity, v ¼ v�=
ðgah3ðT1 	 T2Þ=m‘Þ

x dimensionless displacement from inner cyl-

inder, x ¼ r 	 d
z dimensionless vertical coordinate, z ¼

z�=h

Greek symbols

a thermal expansion coefficient

C curvature parameter, C ¼ r1=‘
d dimensionless radius of inner cylinder, d ¼

r1=h
� aspect ratio of annular gap, � ¼ h=‘
g stretched asymptotic matching variable,

g ¼ �vr
h dimensionless temperature, h ¼ ðT � 	 T2Þ=

ðT1 	 T2Þ
hc conduction temperature profile defined by

Eq. (60)

j thermal diffusivity

k logarithmic temperature profile parameter,

k ¼ 1= lnð�d=ð1 þ �dÞÞ
m kinematic viscosity

n displacement from outer cylinder,

n ¼ r 	 1= �	 d
q0 reference density of Boussinesq system

/ perturbed temperature, / ¼ h 	 hc

v stretching factor used during asymptotic

matching

w cylindrical stream function

x vorticity

Superscripts
� dimensional variable

~ hot end region variable

� cold end region variable

^ core region variable

Fig. 1. Schematic of annular enclosure.
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correspond to the fluid density at the temperature T2 of

the outer cylinder. Gravity acts downwards parallel to

the axis of rotational symmetry. The kinematic viscosity

m, the thermal diffusivity j and the coefficient of thermal

expansion a are all assumed to be constant.

Eqs. (1)–(4) are nondimensionalized using

r ¼ r�

h
; z ¼ z�

h
; h ¼ T � 	 T2

T1 	 T2

;

u ¼ u�

gah3ðT1 	 T2Þ=m‘
and v ¼ v�

gah3ðT1 	 T2Þ=m‘
;

where h is the nondimensional temperature. This is the

same nondimensionalization used by CLI and ML and it

is used here to facilitate comparison with the previous

work.

With the introduction of the axisymmetric stream

function w, and vorticity x, defined by the relations
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r
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; ð5Þ

the governing equations can be reduced to
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The nondimensional boundary conditions are

w ¼ ow
or

¼ 0; h ¼ 1 at r ¼ d; ð9Þ

w ¼ ow
or

¼ h ¼ 0 at r ¼ d þ 1

�
ð10Þ

and

w ¼ ow
oz

¼ oh
oz

¼ 0 at z ¼ 0; 1: ð11Þ

In the above, Pr is the Prandtl number defined by

Pr ¼ m=j and Gr is the Grashof number defined by

Gr ¼ gaðT1 	 T2Þh3=m2.

In this paper the solution of Eqs. (6)–(8) subject to

boundary conditions (9)–(11) will be obtained in the

asymptotic limit as � ! 0 with both Gr and Pr fixed. As

noted previously by ML there are two cases of interest.

The first case is the limit as � ! 0 with C of Oð1Þ. In this

case d, the radius of the inner cylinder, is of Oð1=�Þ. The

second case is the limit as � ! 0 with d of Oð1Þ so that C
is of Oð�Þ. In both cases the solution technique involves

using matched asymptotic expansions in order to match

end region solutions near the inner and outer cylinders,

to central core region solutions where radial changes

take place over distances of Oð1=�Þ.

3. The limit as �fi0 with C of Oð1Þ

When C is of Oð1Þ, the radial coordinate r is of

Oð1=�Þ throughout the entire annular cavity and fol-

lowing ML it is convenient to make the transformation

r ¼ d þ x, so that 1=r ¼ 1=ðd þ xÞ ¼ �=ðC þ �xÞ with x

varying from x ¼ 0 at the inner cylinder to x ¼ 1=� at the

outer cylinder. The transformed equations become
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3.1. Core region solutions

In the central core region radial changes occur over

distances of Oð1=�Þ which suggests the introduction of a

core variable x̂x ¼ �x. If h, w and x are denoted by ĥh, ŵw
and x̂x in the central core, the governing equations be-

come
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oĥh
ox̂x

!
;

ð17Þ

where the rescaling ŵw ¼ �w has been used to ensure a

balance at leading order in the stream function equation.
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Since it will be shown that streamlines from the core

region eventually enter the end regions this same scaling

for w will have to be used in the end regions. A solution

to these equations is sought using a regular asymptotic

expansion of the form

ĥh; ŵw; x̂x
� �

¼
XN
i¼0

�i ĥhi; ŵwi; x̂xi

� �
: ð18Þ

The only boundary conditions available in the core re-

gion are ŵw ¼ oŵw=oz ¼ oĥh=oz ¼ 0 when z ¼ 0, 1.

Substituting expansion (18) into Eqs. (15)–(17) gives

oĥh0

ox̂x
¼ o2x̂x0

oz2
; ð19Þ

1

C þ x̂x
o2ŵw0

oz2
¼ 	x̂x0 ð20Þ

and

o2ĥh0

oz2
¼ 0 ð21Þ

at leading order. The solution which satisfies the bound-

ary conditions oĥh0=oz ¼ oŵw0=oz ¼ ŵw0 ¼ 0 when z ¼ 0, 1

is

oĥh0

ox̂x
¼ c0

C þ x̂x
; ð22Þ

ŵw0 ¼ 	c0

z4

24

�
	 z3

12
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24

�
ð23Þ

and

x̂x0 ¼
c0

C þ x̂x
z2

2

�
	 z

2
þ 1

12

�
; ð24Þ

where c0 is an undetermined function of x̂x. Eq. (21) and

the boundary conditions imply that oĥh0=oz ¼ 0 and for

convenience this constraint has be written in the form of

Eq. (22).

At this point ML make the assumption that the flow

in the core is parallel at leading order which requires the

undetermined function c0 to be a numerical constant.

While this assumption is indeed true, the assumption

itself is unnecessary and should not be made. It will be

proven below that c0 is indeed a numerical constant.

At Oð�Þ the governing equations and boundary

conditions are identical to those at Oð1Þ. Thus the so-

lution is given by Eqs. (22)–(24) with the subscript 0

replaced everywhere with 1.

At Oð�2Þ the energy equation is

GrPr
C þ x̂x

oŵw0

ox̂x
oĥh0
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which, upon substitution of the Oð1Þ solution, becomes

GrPrðc0Þ2

ðC þ x̂xÞ2
z3

6

�
	 z2

4
þ z

12

�
¼ 1

C þ x̂x
oc0

ox̂x
þ o2ĥh2

oz2
: ð26Þ

This equation is integrated from z ¼ 0 to z ¼ 1 to give

1

C þ x̂x
oc0

ox̂x
¼ 0; ð27Þ

which shows that c0 is indeed a constant and conse-

quently Eq. (22) can be integrated to give

ĥh0 ¼ c0 lnðC þ x̂xÞ þ d0; ð28Þ

where both c0 and d0 are constants which can only be

determined by matching the core solution with solutions

in the end regions. (Repeating the above procedure at

Oð�3Þ will reveal that ĥh1 ¼ c1 lnðC þ x̂xÞ þ d1, where c1

and d1 are numerical constants.)

With the aid of Eq. (27), Eq. (25) can be integrated

twice with respect to z to give

ĥh2 ¼
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72

�
þ H2ðx̂xÞ; ð29Þ

where H2ðx̂xÞ is an undetermined function of x̂x which can

only be determined by examining the energy equation at

Oð�4Þ. Upon substitution of known values, the energy

equation at Oð�4Þ is given by
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Integrating Eq. (30) from z ¼ 0 to z ¼ 1 and imposing

the relevant boundary conditions yields

o2H2

ox̂x2
þ 1

C þ x̂x
oH2

ox̂x
¼ 4ðGrPrÞ2ðc0Þ3

725760ðC þ x̂xÞ4
	 4GrPrðc0Þ2

1440ðC þ x̂xÞ4
;

ð31Þ

which can be integrated twice with respect to x̂x to give

H2ðx̂xÞ ¼ c2 lnðC þ x̂xÞ þ d2 þ
ðGrPrÞ2ðc0Þ3

725760ðC þ x̂xÞ2

	 GrPrðc0Þ2

1440ðC þ x̂xÞ2
; ð32Þ

where c2 and d2 are constants which must be determined

by matching with the end region solutions.
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By contrast, ML specified the value of H2 by as-

suming that ĥh2 should be of the same form as the Oð�2Þ
perturbation to the temperature field in the problem

studied by CLI. Using this assumption, ML incorrectly

conclude that H2ðx̂xÞ ¼ 	GrPrðc0Þ2=1440ðC þ x̂xÞ2.
With ĥh2 determined, the vorticity and stream function

equations at Oð�2Þ can be combined and manipulated to

yield

o4ŵw2

oz4
¼ 2Grðc0Þ2

ðC þ x̂xÞ2
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12
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þ 13z3

72
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	 1
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�
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1

362880
	 c2: ð33Þ

Integrating this equation four times with respect to z,

and using the boundary conditions oŵw2=oz ¼ ŵw2 ¼ 0 at

z ¼ 0, 1 gives

ŵw2 ¼
2Grðc0Þ2

ðC þ x̂xÞ2
1
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9
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9
z9

�
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!
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24

�
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24

�
: ð34Þ

While it is possible to continue the analysis to higher

orders in �, this shall not pursued here. Of special note

however, is that the analysis has shown that for the case

of a cylindrical annulus, the core region flow becomes

nonparallel at Oð�2Þ. By contrast, the core region flow is

parallel to all orders in � in the two-dimensional cavity

studied by CLI. Thus, when C is of Oð1Þ as � ! 0,

curvature is seen to have a small but noticeable effect on

the flow in the core region. This observation foreshad-

ows the difficulties which will be faced when d is of Oð1Þ
as � ! 0.

3.2. End region solutions

In the hot end region near the inner cylinder h, w and

x are denoted by ~hh, ~ww and ~xx, while in the cold end re-

gion, �hh, �ww and �xx are used. Since the streamlines in the

core are parallel at leading order, they must eventually

enter into the end regions. Hence ~ww and �ww must be re-

scaled as ~ww ¼ �w and �ww ¼ �w. The governing equations

in the hot end are Eqs. (12)–(14) while the governing

equations in the cold end are obtained from Eqs. (12)–

(14) by performing the transformation n ¼ 1=�	 x. The

variable n measures the distance away from the cold

cylinder wall and is introduced here to facilitate

matching.

In order to match the end region solutions with so-

lutions in the core region, the flow variables are ex-

panded as

~hh; ~ww; ~xx; �hh; �ww; �xx
� �

¼
XN
i¼0

�i ~hhi; ~wwi; ~xxi; �hhi; �wwi; �xxi

� �
: ð35Þ

The matching conditions between the core and end re-

gion solutions are given by

lim
x̂x!0

ĥh; ŵw; x̂x
� �

() lim
x!1

~hh; ~ww; ~xx
� �

; ð36Þ

lim
x̂x!1

ĥh; ŵw; x̂x
� �

() lim
n!1

�hh; �ww; �xx
� �

; ð37Þ

where the symbol () is used to indicate that the

matching conditions apply in the limit as � ! 0.

At Oð1Þ the governing equations in the hot end re-

gion are

o~hh0

ox
¼ 0; ð38Þ

	 1

C
o2 ~ww0

ox2

 
þ o2 ~ww0

oz2

!
¼ ~xx0 ð39Þ

and

o2 ~hh0

ox2
þ o2 ~hh0

oz2
¼ 0: ð40Þ

When Eqs. (38) and (40) are combined with the appro-

priate boundary conditions, it is seen that ~hh0 ¼ 1. In the

cold end region the governing equations are the same as

Eqs. (38)–(40) except that C is replaced by C þ 1 and

o=ox is replaced by 	o=on. Applying the appropriate

boundary conditions, the leading order temperature field

in the cold end region is given by �hh0 ¼ 0.

In order to apply conditions (36) and (37), ĥh0 is ex-

panded in terms of the end region variables resulting in

c0 lnC þ c0

�x
C

�
	 1

2

�x
C

� �2

þ � � �
�
þ d0 () 1 ð41Þ

and

c0 lnðC þ 1Þ þ c0

 
	 �n

C þ 1
	 1

2

�n
C þ 1

� �2

	 � � �
!

þ d0 () 0; ð42Þ

which gives c0 ¼ 1= lnðC=ðC þ 1ÞÞ and d0 ¼ 	 lnðCþ
1Þ= lnðC=ðC þ 1ÞÞ. The mismatch which occurs when

matching at this order has to be accounted for when

matching the solutions at higher order.

With the values of c0 and d0 now determined, it is

interesting to note that this leading order solution does
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not depend on either Gr or Pr, which indicates that the

flow is controlled solely by conduction and mass con-

servation at leading order.

At Oð�Þ the energy equation in the hot end region

simplifies to

o2 ~hh1

ox2
þ o2 ~hh1

oz2
¼ 0 ð43Þ

after substituting for the known value of ~hh0. Integrating

this equation from z ¼ 0 to z ¼ 1 and using the fact that

o~hh1=oz ¼ 0 when z ¼ 0, 1 yieldsZ 1

0

o2 ~hh1

ox2
dz ¼ 0: ð44Þ

Integrating this twice with respect to x, and noting that
~hh1 ¼ 0 when x ¼ 0 givesZ 1

0

~hh1 dz ¼ a1x; ð45Þ

where a1 is a constant of integration. This equation is

valid everywhere in the hot end, and in particular, it is

valid in the limit when the hot end approaches the core.

According to the matching condition (36)

~hh1 ()
c0x
C

þ c1 ln C þ c1

�x
C

�
	 1

2

�x
C

� �2

þ � � �
�
þ d1;

ð46Þ

where the first term is the result of the mismatch at

leading order. Substituting this expansion into Eq. (45)

and retaining only the leading order terms gives

c0x
C

þ c1 lnC þ d1 ¼ a1x: ð47Þ

Repeating the above analysis in the cold end region re-

veals

	 c0n
C þ 1

þ c1 lnðC þ 1Þ þ d1 ¼ a2n; ð48Þ

where a2 is an undetermined constant. Combining Eqs.

(47) and (48) gives a1 ¼ c0=C, a2 ¼ 	c0=ðC þ 1Þ and

c1 ¼ d1 ¼ 0. Thus there is no additional mismatch at this

order, and the end region solutions are seen to be
~hh1 ¼ c0x=C and �hh1 ¼ 	c0n=ðC þ 1Þ.

At Oð�2Þ the energy equation in the hot end region

can be written as

o2 ~hh2

ox2
þ o2 ~hh2

oz2
¼ 	GrPrc0

C2

o ~ww0

oz
	 c0

C2
ð49Þ

by first substituting for the known values of ~hh0 and ~hh1.

Integrating Eq. (49) from z ¼ 0 to z ¼ 1 and applying

the appropriate boundary conditions yieldsZ 1

0

o2 ~hh2

ox2
dz ¼ 	 c0

C2
: ð50Þ

Integrating Eq. (50) twice with respect to x and applying

the boundary conditions yieldsZ 1

0

~hh2 dz ¼ 	 c0

2C2
x2 þ a3x; ð51Þ

where a3 is a constant of integration. The matching

condition for ~hh2 is

~hh2 () 	 c0

2C2
x2 þ c2 lnCþ d2 þ

GrPrðc0Þ2

C2

� z5

120

�
	 z4

48
þ z3

72
	 1

1440

�
þ ðGrPrÞ2ðc0Þ3

725760C2
ð52Þ

as x ! 1, where the x2 term is the result of the mis-

match at leading order, and higher order terms in � in

the expansion of ĥh2 have not been retained. Applying

this matching condition with Eq. (51) yields

	 c0

2C2
x2 þ c2 lnC þ d2 þ

ðGrPrÞ2ðc0Þ3

725760C2

¼ 	 c0

2C2
x2 þ a3x: ð53Þ

When the same analysis is repeated in the cold end re-

gion, the corresponding result is

	 c0

2ðC þ 1Þ2
n2 þ c2 lnðC þ 1Þ þ d2

þ ðGrPrÞ2ðc0Þ3

725760ðC þ 1Þ2
¼ 	 c0

2ðC þ 1Þ2
n2 þ a4n: ð54Þ

Combining the above two equations gives a3 ¼ a4 ¼ 0 as

well as

c2 ¼
ðGrPrÞ2ðc0Þ3

725760

1

ðC þ 1Þ2

 
	 1

C2

!
ln

C
C þ 1

� �	
ð55Þ

and

d2 ¼
ðGrPrÞ2ðc0Þ3

725760

lnC

ðC þ 1Þ2

 
	 lnðC þ 1Þ

C2

!
ln

C þ 1

C

� �	
:

ð56Þ

With c2 and d2 known, the core solution has been

completely determined to Oð�2Þ and this solution will be

used in Section 5 to determine the total rate of heat

transfer (and hence the Nusselt number) between the hot

inner cylinder and the cold outer cylinder.

At this point it would be possible to write equations

to explicitly solve for ð ~ww0;
~ww1;

~ww2;
~hh2Þ and ð �ww0;

�ww1;
�ww2;

�hh2Þ
however this shall not be pursued here other then to

mention that the equations and their solution technique

are essentially equivalent to the corresponding equations

derived and solved numerically by CLI for the case of

natural convection in a shallow rectangular cavity.
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4. The limit as �fi0 with d of Oð1Þ

The asymptotic analysis when d is of Oð1Þ is con-

siderably more difficult than when C is of Oð1Þ. The

difficulty results from differences in the magnitude of

curvature effects within the enclosure since when d is of

Oð1Þ, r varies from being of Oð1Þ near the inner cylinder

to being of Oð1=�Þ near the outer cylinder. In their

original paper, ML note the difficulties associated with

the asymptotic analysis when d is of Oð1Þ, however, they

incorrectly conclude that the solutions in the core region

are identical to Oð�2Þ for both the cases when d is of

Oð1Þ and when C is of Oð1Þ. In this section it will be

shown that curvature effects profoundly influence the

asymptotic solutions when d is of Oð1Þ and that these

solutions are indeed distinct from the solutions when C
is of Oð1Þ.

The analysis begins by writing the governing equa-

tions for the core region and for the two end regions. In

the core region the solutions will be identified with su-

perscript ’̂s, while in the hot end regions~’s are used and

in the cold end region�’s are used. As for the case when

C is of Oð1Þ, the stream function is rescaled in each of

the regions as ŵw ¼ �w, ~ww ¼ �w and �ww ¼ �w. This rescal-

ing of the stream function forces a rescaling of the

vorticity in the hot end region of ~xx ¼ �x to ensure a

balance at leading order. Upon substitution of ~ww ¼ �w
and ~xx ¼ �x into Eqs. (6)–(8), the governing equations in

the hot end region become

Gr
r

o ~ww
or

o ~xx
oz

 
	 o ~ww

oz
o ~xx
or

þ ~xx
r
o ~ww
oz

!

¼ o2 ~xx
or2

þ 1

r
o ~xx
or

	 ~xx
r2

þ o2 ~xx
oz2

	 o~hh
or

; ð57Þ

1

r
o2 ~ww
or2

	 1

r2

o ~ww
or

þ 1

r
o2 ~ww
oz2

¼ 	 ~xx ð58Þ

and

GrPr
r

o ~ww
or

o~hh
oz

 
	 o ~ww

oz
o~hh
or

!
¼ o2 ~hh

or2
þ 1

r
o~hh
or

þ o2 ~hh
oz2

: ð59Þ

As noted by ML, the absence of a small parameter in

Eqs. (57)–(59) highlights the difficulty of the asymptotic

analysis when d is of Oð1Þ. If the analysis where per-

formed using asymptotic expansions of the form of sum

(18), then the full nonlinear vorticity, stream function

and energy equations would have to be solved at each

order in �. To avoid having to solve the full nonlinear

equations, a small parameter can be conveniently in-

troduced into Eqs. (57) and (58) by making the substi-

tution

h ¼ / þ hc; ð60Þ

where

hc ¼
lnð�r=ð1 þ �dÞÞ
lnð�d=ð1 þ �dÞÞ ð61Þ

is the conduction temperature profile which would result

in the absence of convection (Gr ¼ 0). This substitution

introduces the asymptotically small parameter

k ¼ 1 ln
�d

1 þ �d

� �	

 1= ln � ð62Þ

and it is motivated by the observation that the leading

order temperature field for the case when C is of Oð1Þ is

precisely h ¼ hc. The transformed vorticity and energy

equations in the hot end region become

Gr
r

o ~ww
or

o ~xx
oz

 
	 o ~ww

oz
o ~xx
or

þ ~xx
r
o ~ww
oz

!

¼ o2 ~xx
or2

þ 1

r
o ~xx
or

	 ~xx
r2

þ o2 ~xx
oz2

	 k
r
	 o ~//

or
ð63Þ

and

GrPr
r

o ~ww
or

o ~//
oz

 
	 o ~ww

oz
o ~//
or

!
	 k

GrPr
r2

o ~ww
oz

¼ o2 ~//
or2

þ 1

r
o ~//
or

þ o2 ~//
oz2

: ð64Þ

The governing equations in the core region are ob-

tained from Eqs. (6)–(8) by introducing the scaling

ŵw ¼ �w and transforming the radial coordinate as r̂r ¼ �r.
Upon substituting using Eq. (60), the core region equa-

tions become

Gr�2

r̂r
oŵw
or̂r

ox̂x
oz

 
	 oŵw

oz
ox̂x
or̂r

þ x̂x
r̂r
oŵw
oz

!

¼ �2 o2x̂x
or̂r2

 
þ 1

r̂r
ox̂x
or̂r

	 x̂x
r̂r2

!
þ o2x̂x

oz2
	 k

r̂r
	 o/̂/

or̂r
; ð65Þ

�2
1

r̂r
o2ŵw
or̂r2

 
	 1

r̂r2

oŵw
or̂r

!
þ 1

r̂r
o2ŵw
oz2

¼ 	x̂x ð66Þ

and

GrPr�2

r̂r
oŵw
or̂r

o/̂/
oz

 
	 oŵw

oz
o/̂/
or̂r

!
	 k�2

GrPrbr2r2

oŵw
oz

¼ �2 o2/̂/
or̂r2

 
þ 1

r̂r
o/̂/
or̂r

!
þ o2/̂/

oz2
: ð67Þ

The governing equations in the cold end region are ob-

tained from Eqs. (6)–(8) and (60) by using the scaling

ŵw ¼ �w and by making the transformation n ¼ d þ 1=
�	 r.

The form of the governing equations when d is of

Oð1Þ suggests seeking asymptotic solutions using an

expansion of the form
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ðŵw; /̂/; x̂xÞ ¼
XN
i¼0

�i
X1
k¼1

kk ŵwk
i ; ĥh

k
i ; x̂x

k
i

� � !
ð68Þ

in the core region with identical expansions in the hot

and cold end regions. In order to obtain asymptotic

solutions, the inner summation must be performed be-

fore the outer summation.

Solution methodology. The objective of the analysis is

to determine the first convective contribution (i.e., Gr
number dependence) to the temperature and stream

function fields in the central core region. To do this the

governing equations are solved in the central core region

and matched with solutions in the end regions. It will be

shown that the first convective contribution in the cen-

tral core region occurs at Oðk4Þ. Due to the need to solve

the governing equations in the hot end region numeri-

cally, matching is not performed beyond this order.

4.1. Core region solutions

The solution of the governing equations in the core

region when d is of Oð1Þ is very similar to the solution of

the governing equations when C is of Oð1Þ and only the

solutions will be presented here.

At OðkkÞ the solutions are

/̂/k
0 ¼ ck0 ln r̂r þ dk

0 ð69Þ

and

ŵwk
0 ¼ 	ðck0 þ d1;kÞ

z4

24

�
	 z3

12
þ z2

24

�
; ð70Þ

where ck0 and dk
0 are unknown numerical constants which

must be determined by matching with the end region

solutions and d1;k ¼ 1 when k ¼ 1 and d1;k ¼ 0 when

k > 1.

At Oð�kkÞ the solutions are

/̂/k
1 ¼ ck1 ln r̂r þ dk

1 ð71Þ

and

ŵwk
1 ¼ 	ck1

z4

24

�
	 z3

12
þ z2

24

�
; ð72Þ

where ck1 and dk
1 are unknown numerical constants which

must be determined by matching with the end region

solutions.

At Oð�2kkÞ the solutions are

/̂/k
2 ¼ ck2 ln r̂r þ dk

2 þ ek2
GrPr
r̂r2

z5

120

�
	 z4

48
þ z3

72
	 1

1440

�
þ f k

2

ðGrPrÞ2

r̂r2

1

725760

 !
ð73Þ

and

ŵwk
2 ¼ ek2

2GrPr
r̂r2

1

8!

1

9
z9

�
	 1

2
z8 þ 2

3
z7 	 7

6
z4 þ 11

9
z3 	 1

3
z2
�

þ gk2
2Gr
r̂r2

1

8!

10

9
z9

�
	 5z8 þ 26

3
z7 	 7z6 þ 7

3
z5 	 1

9
z3
�

þ 2f k
2 ðGrPrÞ

2

r̂r2

1

725760

 
	 ck2

!
z4

24

�
	 z3

12
þ z2

24

�
;

ð74Þ

where ck2 and dk
2 are unknown numerical constants which

must be determined by matching with the end region

solutions,

ek2 ¼ d1;k	1 þ ck	1
0 þ

X
mþn¼k

cm0 ðd1;n þ cn0Þ;

f k
2 ¼

X
mþn¼k

em2 ðd1;n þ cn0Þ

and

gk2 ¼
X

mþn¼k

ðd1;m þ cm0 Þðd1;n þ cn0Þ:

An examination of Eqs. (73) and (74) reveals that

some of the terms in the asymptotic expansion in the

core region jump order when matching with solutions in

the hot end region. To accommodate this, the matching

is performed using an intermediate variable g ¼ r�v ¼
r̂r�v	1, where 0 < v < 1. (See Hinch [6] for details.)

Matching is performed by expressing the core region

solutions and the hot end region solutions in terms of g
and then ensuring that the solutions have the identical

form throughout the intermediate matching region (see

Fig. 2). Observing that

�2

r̂r2
¼ 1

g2
�2v ¼ 1

r2
ð75Þ

it follows that the 1=r̂r2 terms which occur at Oð�2Þ in the

core region must be matched with 1=r2 terms at Oð1Þ in

the hot end region. To complicate matters further it can

be shown that for all nP 1 there are terms in the core

region solutions at Oð�2nÞ which vary as 1=r̂r2n and hence

jump to Oð1Þ when matching with solutions in the hot

end region.

Fig. 2. Intermediate matching region when � ! 0 with d of

Oð1Þ.
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4.2. The cold end region

The temperature matching condition between the

core region and the cold end region is given by

lim
r̂r!1þ�d

/̂/k
n () lim

n!1
�//k
n; ð76Þ

where it is noted that when matching with the cold end

region no terms in the core region solution jump order.

For the current purposes matching will only be per-

formed for n ¼ 0.

At OðkkÞ (for all k) the energy equation in the cold

end region gives

o2 �//k
0

on2
þ o2 �//k

0

oz2
¼ 0; ð77Þ

while the vorticity equation gives

o �//k
0

on
¼ 0: ð78Þ

Combining Eqs. (77) and (78) with the boundary con-

ditions o �//k
0=oz ¼ 0 when z ¼ 0; 1 and �//k

0 ¼ 0 when n ¼ 0

requires �//k
0 ¼ 0 for all k. The solution to the energy

equation at OðkkÞ in the core region is simply /̂/k
0 ¼

ck0 ln r̂r þ dk
0 . Expressing /̂/k

0 in terms of n and applying the

matching condition (76) yields

ck0 lnð1 þ �ðd 	 nÞÞ þ dk
0 () �//k

0 ¼ 0; ð79Þ

which can be expanded to give

ck0ð�ðd 	 nÞ 	 1=2�2ðd 	 nÞ2 þ � � �Þ þ dk
0 () 0: ð80Þ

Hence to leading order in �, dk
0 ¼ 0 for all k.

4.3. The hot end region

The energy equation in the hot end region at OðkkÞ
can be written as

o2 ~//k
0

or2
þ 1

r
o ~//k

0

or
þ o2 ~//k

0

oz2
¼ f ðr; zÞ; ð81Þ

where f ðr; zÞ is a forcing function, which can be written

explicitly by examining Eq. (64).

The general solution to Eq. (81) is

~//k
0 ¼ ð ~//k

0Þh þ ð ~//k
0Þnh; ð82Þ

where ð ~//k
0Þh is the homogeneous solution to Eq. (81)

with f ðr; zÞ replaced by 0 and ð ~//k
0Þnh is a particular so-

lution to nonhomogeneous Eq. (81) when f ðr; zÞ 6¼ 0.

The boundary conditions on ~//k
0 are ~//k

0 ¼ 0 when r ¼ d
and o ~//k

0=oz ¼ 0 when z ¼ 0; 1. Moreover ð ~//k
0Þh and

ð ~//k
0Þnh must be of the correct form to match with solu-

tions from the core region. Noting from Section 4.1

above that the core region solutions behave as the sum

of logarithmic terms, constant terms and terms which

jump order with a radial dependence of 1=r2n in the in-

termediate matching region, it follows that the hot end

region solutions must display the same behaviour in the

intermediate matching region. The homogeneous solu-

tion to Eq. (81) which satisfies all of the boundary

conditions and which is of the correct form to match

with the core region solutions is simply

~//k
0 ¼ Ck

0 lnðr=dÞ; ð83Þ

where Ck
0 is a numerical constant which must be deter-

mined by matching. Thus, to ensure that the hot end

regions solutions are of the correct form to match with

the core region solutions it follows that the particular

nonhomogeneous solution to Eq. (81) must behave as

ð ~//k
0Þnh () Dk

0 þ Jk
0 ðr; zÞ ð84Þ

throughout the intermediate matching region where Dk
0

is an as of yet undetermined numerical constant and

where Jk
0 ðr; zÞ is used to denote the sum of terms which

jump to order OðkkÞ when matching between the core

region and the hot end region.

4.3.1. The logarithmic and constant terms

Matching the logarithmic and constant terms in the

core region with the corresponding terms in the hot end

region and is performed using the intermediate variable

g ¼ r�v ¼ r̂r�v	1, where 0 < v < 1. The matching condi-

tion isX1
k¼1

kk Ck
0 lnðr=dÞ

�
þ Dk

0

�
()

X1
k¼1

kk ck0 ln r̂r
�

þ dk
0

�
; ð85Þ

which is expanded to yield

C1
0vk lnð1=�Þ þ C1

0 lnðg=dÞ
�

þ D1
0

�
k þ C2

0vk2 lnð1=�Þ þ � � �

() c1
0ðv 	 1Þk lnð1=�Þ þ c1

0 ln g
�

þ d1
0

�
k

þ c2
0ðv 	 1Þk2 lnð1=�Þ þ � � � : ð86Þ

By expanding Eq. (62) in terms of � as � ! 0 it can be

shown that

k lnð1=�Þ ¼ 	1 þ kðln d 	 ð�dÞ þ 1

2
ð�dÞ2 	 1

3
ð�dÞ3 	 � � �Þ:

ð87Þ

Thus, to leading order in �, k lnð1=�Þ ¼ 	1 þ k ln d and

when this substitution is made into Eq. (86) and the

coefficients of the powers of k are compared it is seen

that

C1
0v ¼ c1

0ðv 	 1Þ ð88Þ

and

Ck
0 lnðg=dÞ þ Dk

0 þ Ck
0v ln d 	 Ckþ1

0 v

¼ ck0 ln g þ dk
0 þ ck0ðv 	 1Þ ln d 	 ckþ1

0 ðv 	 1Þ; ð89Þ
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for k > 1. Since Eqs. (88) and (89) must be satisfied for

all values of 0 < v < 1 it follows that C1
0 ¼ c1

0 ¼ 0, and

that Ck
0 ¼ ck0 with Dk

0 ¼ dk
0 þ ckþ1

0 when k > 1. Matching

in the cold end region has shown that dk
0 ¼ 0 for all k so

it follows that ckþ1
0 ¼ Ckþ1

0 ¼ Dk
0.

4.3.2. The nonhomogeneous solutions

While the above analysis has shown how the con-

stants Dk
0 are matched with solutions in the core region,

the numerical value of these constants can only be de-

termined by calculating the nonhomogeneous solutions

noted in Eq. (84). The nonhomogeneous solutions are

obtained using numerical integration and results are

presented in this section for the particular value of

d ¼ 1.

The energy equation at OðkÞ in the hot end region is

o2 ~//1
0

or2
þ 1

r
o ~//1

0

or
þ o2 ~//1

0

oz2
¼ 0 ð90Þ

and the only solution which satisfies the appropriate

boundary conditions and which can be matched with the

core region solutions is ~//1
0 ¼ C1

0 lnðr=dÞ. (At OðkÞ there

are no terms in the core region solutions which jump

order.) Noting from above that C1
0 ¼ 0 it follows that

~//1
0 ¼ 0. Since Eq. (90) is homogeneous, it follows that

there is no nonhomogeneous solution and that D1
0 ¼ 0.

This in turn implies that C2
0 ¼ c2

0 ¼ 0 so that the ho-

mogeneous solution at Oðk2Þ vanishes.

The vorticity and stream function equations at OðkÞ
can be combined to give

o2

or2

�
þ 1

r
o

or
	 1

r2
þ o2

oz2

�
1

r
o2

or2

�
	 1

r2

o

or
þ 1

r
o2

oz2

�
~ww1

0

¼ 	 1

r
: ð91Þ

The boundary conditions on ~ww1
0 are ~ww1

0 ¼ o ~ww1
0=oz ¼ 0

when z ¼ 0, 1 and ~ww1
0 ¼ o ~ww1

0=or ¼ 0 when r ¼ d.

Throughout the entire matching region, ~ww1
0 must satisfy

~ww1
0 () 	 z4=24

�
	 z3=12 þ z2=24

�
: ð92Þ

Eq. (91) is clearly related to the biharmonic equation

solved by CLI in relation to convection in shallow

rectangular enclosures. Below it will be shown that the

solution of ~ww1
0 is required in order to determine higher

order approximations to ~ww and ~//, and the approach

adopted here is to use a numerical technique to solve Eq.

(91). CLI also employed a numerical technique to per-

form the matching during their asymptotic analysis and

the analysis which follows is closely related to that of

CLI. The solution of Eq. (91) is plotted in Fig. 3 for the

specific value of d ¼ 1. It is seen that the leading order

stream function smoothly turns the flow through 180�,
in a similar manner to that observed in convection in

shallow rectangular enclosures (cf. CLI, Fig. 2).

The numerical solution to Eq. (91) was obtained

using a second order central difference formulation. The

matching condition (92) was applied by setting ~ww1
0 ¼

	 z4=24 	 z3=12 þ z2=24ð Þ and o ~ww1
0=or ¼ 0 at a radius

r ¼ d þ dr. Solutions were calculated with dr ¼ 4, 6 and

8, and it was observed that the results were insensitive to

the choice of dr. All of the numerical solutions discussed

in this paper were first calculated using a uniform grid

with 201 (radial) by 51 (vertical) nodes and then using a

uniform grid with 401 by 101nodes. As discussed below,

the key output from the full series of numerical inte-

grations is the value of D3
0 and this value varied by less

than 1:5% when comparing between the two grids.

The energy equation at Oðk2Þ simplifies to

o2 ~//2
0

or2
þ 1

r
o ~//2

0

or
þ o2 ~//2

0

oz2
¼ 	GrPr

r2

o ~ww1
0

oz
ð93Þ

subject to the boundary conditions ~//2
0 ¼ 0 when r ¼ d

and o ~//2
0=oz ¼ 0 when z ¼ 0; 1. The matching condition

for ~//2
0 is

~//2
0 () C2

0 lnðr=dÞ þ D2
0 þ �2/̂/2

2

�
þ �4/̂/2

4 þ �6/̂/2
6 þ � � �

�
ð94Þ

throughout the intermediate matching region where it is

noted that the homogeneous part of the solution ð ~//2
0Þh ¼

C2
0 lnðr=dÞ can in fact be neglected since C2

0 ¼ 0. Ap-

pendix A lists the functions /̂/2
2n for n ¼ 1; 2; 3.

The value of D2
0 can be determined by integrating Eq.

(93) from z ¼ 0, 1 to giveZ 1

0

o2 ~//2
0

or2

 
þ 1

r
o ~//2

0

or
þ o2 ~//2

0

oz2

!
dz ¼ 0; ð95Þ

where it is noted that this equation is valid in the hot end

region and throughout the entire intermediate matching

region. Since ~//2
0 ¼ 0 when d ¼ 0, Eq. (95) can be inte-

grated twice with respect to r to giveZ 1

0

~//2
0 dz ¼ ðC2

0Þ
0
lnðr=dÞ; ð96Þ

Fig. 3. Leading order stream function ~ww1
0 in the hot end region

when d ¼ 1.
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where ðC2
0Þ

0
is a numerical constant of integration. Since

it can be shown that
R 1

0
/̂/2

2n dz ¼ 0 for all n, substitution

of matching condition (94) into Eq. (95) yields ðC2
0Þ

0 ¼
C2

0 and more importantly D2
0 ¼ 0. This implies that

C3
0 ¼ c3

0 ¼ 0.

By examining the form of Eqs. (93) and (94), it is seen

that ~//2
0 can be decomposed as ~//2

0 ¼ GrPrð ~//2
0Þ

0
where

ð ~//2
0Þ

0
satisfies

o2ð ~//2
0Þ

0

or2
þ 1

r
oð ~//2

0Þ
0

or
þ o2ð ~//2

0Þ
0

oz2
¼ 	 1

r2

o ~ww1
0

oz
: ð97Þ

The matching condition for ð ~//2
0Þ

0
is obtained from Eq.

(94) by setting C2
0 ¼ D2

0 ¼ 0. As noted in Appendix A /̂/2
2n

can be written as /̂/2
2n ¼ GrPrð/̂/2

2nÞ
0
where ð/̂/2

2nÞ
0
is inde-

pendent of Gr and Pr. Eq. (97) was solved using a second

order central difference formulation using the same nu-

merical grids which were employed to calculate ~ww1
0.

During the numerical integration, the sum given in Eq.

(94) was truncated at Oð�10Þ. The numerically deter-

mined solution of Eq. (97) is plotted in Fig. 4 for d ¼ 1.

It is seen that the Oðk2Þ correction to the temperature

field leads to positive perturbations in the top half of the

enclosure and negative perturbations in the bottom half

of the enclosure.

The vorticity and stream function equations can be

combined at Oðk2Þ to give

o2

or2

�
þ 1

r
o

or
	 1

r2
þ o2

oz2

�
1

r
o2

or2

�
	 1

r2

o

or
þ 1

r
o2

oz2

�
~ww2

0

¼	o ~//2
0

or
	Gr

r
o ~ww1

0

or
o ~xx1

0

oz

 
	 o ~ww1

0

oz
o ~xx1

0

or
þ ~xx1

0

r
o ~ww1

0

oz

!
ð98Þ

with ~ww2
0 ¼ o ~ww2

0=oz ¼ 0 when z ¼ 0, 1 and ~ww2
0 ¼ o ~ww1

0=or ¼
0 when r ¼ d. Since it has been shown that c2

0 ¼ 0 and

hence that ŵw2
0 ¼ 0, it follows that the matching condition

for ~ww2
0 is the sum of the terms in the solutions for ŵw2

2n

which jump to Oðk2Þ when matching with the hot end

region. By examining these core region solutions and by

examining Eq. (98) it is seen that ~ww2
0 can be decomposed

as ~ww2
0 ¼ GrPrð ~ww2

0Þ
0 þ Grð ~ww2

0Þ
00
, where ð ~ww2

0Þ
0

and ð ~ww2
0Þ

00

satisfy

o2

or2

�
þ 1

r
o

or
	 1

r2
þ o2

oz2

�
1

r
o2

or2

�
	 1

r2

o

or
þ 1

r
o2

oz2

�
ð ~ww2

0Þ
0

¼ 	 oð ~//2
0Þ

0

or
ð99Þ

and

o2

or2

�
þ1

r
o

or
	 1

r2
þ o2

oz2

�
1

r
o2

or2

�
	 1

r2

o

or
þ1

r
o2

oz2

�
ð ~ww2

0Þ
00

¼	1

r
o ~ww1

0

or
o ~xx1

0

oz

 
	o ~ww1

0

oz
o ~xx1

0

or
þ ~xx1

0

r
o ~ww1

0

oz

!
; ð100Þ

respectively. The matching conditions for ð ~ww2
0Þ

0
and

ð ~ww2
0Þ

00
are given by

ð ~ww2
0Þ

0 () �2ðŵw2
2Þ

0 þ �4ðŵw2
4Þ

0 þ �6ðŵw2
6Þ

0 þ � � � ð101Þ

and

ð ~ww2
0Þ

00 () �2ðŵw2
2Þ

00 þ �4ðŵw2
4Þ

00 þ �6ðŵw2
6Þ

00 þ � � � ; ð102Þ

where it is noted that ðŵw2
2nÞ

0
and ðŵw2

2nÞ
00

are listed in

Appendix A for n ¼ 1; 2; 3. The solution of Eqs. (99) and

(100) subject to the appropriate boundary and matching

conditions have been obtained numerically and the re-

sults for the specific value of d ¼ 1 are plotted in Fig. 5

where it is noted that the summations in Eqs. (101) and

(102) were truncated at Oð�10Þ. It is seen that the ð ~ww2
0Þ

0

perturbation consists of 4 counter-rotating cells with

two of the cells confined near the inner cylinder and the

other two cells extending into the intermediate matching

region. The ð ~ww2
0Þ

00
perturbation consists of two counter-

rotating cells which only extend a short distance from

the inner cylinder.

The energy equation at Oðk3Þ in the hot end region is

given by

o2 ~//3
0

or2
þ 1

r
o ~//3

0

or
þ o2 ~//3

0

oz2

¼ GrPr
r

o ~ww1
0

or
o ~//2

0

oz

 
	 o ~ww1

0

oz
o ~//2

0

or

!
	 GrPr

r2

o ~ww2
0

oz
; ð103Þ

subject to the boundary conditions ~//3
0 ¼ 0 when r ¼ d

and o ~//3
0=oz ¼ 0 when z ¼ 0; 1. The matching condition

for ~//3
0

~//3
0 () D3

0 þ �2/̂/3
2 þ �4/̂/3

4 þ �6/̂/3
6 þ � � � ; ð104Þ

where it is noted that previous matching has shown that

C3
0 ¼ c3

0 ¼ 0 so that the homogeneous solution ð ~//3
0Þh

vanishes. The /̂/3
2n terms represent core region solutions

which jump order when matching with the hot end re-

gion. The matching condition and Eq. (103) are such
Fig. 4. The Oðk2Þ temperature perturbation ~//2

0 in the hot end

region when d ¼ 1.
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that ~//3
0 can be decomposed as ~//3

0 ¼ ðGrPrÞ2ð ~//3
0Þ

0 þ
ðGr2PrÞð ~//3

0Þ
00
, where ð ~//3

0Þ
0
and ð ~//3

0Þ
00

satisfy

o2ð ~//3
0Þ

0

or2
þ 1

r
oð ~//3

0Þ
0

or
þ o2ð ~//3

0Þ
0

oz2

¼ 1

r
o ~ww1

0

or
oð ~//2

0Þ
0

oz

 
	 o ~ww1

0

oz
oð ~//2

0Þ
0

or

!
	 1

r2

oð ~ww2
0Þ

0

oz
ð105Þ

and

o2ð ~//3
0Þ

00

or2
þ 1

r
oð ~//3

0Þ
00

or
þ o2ð ~//3

0Þ
00

oz2
¼ 	 1

r2

oð ~ww2
0Þ

00

oz
; ð106Þ

respectively. The matching conditions for ð ~//3
0Þ

0
is

ð ~//3
0Þ

0 () ðD3
0Þ

0 þ �2ð/̂/3
2Þ

0 þ �4ð/̂/3
4Þ

0 þ �6ð/̂/3
6Þ

0 þ � � �
ð107Þ

and the matching conditions for ð ~//3
0Þ

00
is

ð ~//3
0Þ

00 () ðD3
0Þ

00 þ �2ð/̂/3
2Þ

00 þ �4ð/̂/3
4Þ

00 þ �6ð/̂/3
6Þ

00 þ � � � ;
ð108Þ

where it is noted that D3
0 ¼ ðGrPrÞ2ðD3

0Þ
0 þ ðGr2PrÞðD3

0Þ
00

and that ð/̂/3
2nÞ

0
and ð/̂/3

2nÞ
00

are listed in Appendix A for

n ¼ 1; 2; 3.

Following CLI, the unknown constant ðD3
0Þ

0
is de-

termined as part of the solutions to Eq. (105). In par-

ticular matching condition (107) is replaced by

oð ~//3
0Þ

0

or
¼ o

or
�2ð/̂/3

2Þ
0

�
þ �4ð/̂/3

4Þ
0 þ �6ð/̂/3

6Þ
0 þ � � �

�
ð109Þ

and the value of ðD3
0Þ

0
is determined from the numerical

solutions of Eq. (105) by defining

ðD3
0Þ

0 ¼ ð ~//3
0Þ

0 	 ð�2ð/̂/3
2Þ

0 þ �4ð/̂/3
4Þ

0 þ �6ð/̂/3
6Þ

0 þ � � �Þ ð110Þ

and then examining the value of ðD3
0Þ

0
throughout the

intermediate matching region. In the numerical imple-

mentation the summations in Eqs. (109) and (110) were

truncated at Oð�10Þ. The value of ðD3
0Þ

00
is determined

using the same procedure which led to Eqs. (95) and

(96). This gives ðD3
0Þ

00 ¼ 0 for all d.

The numerical solution for ð ~//3
0Þ

0
when d ¼ 1 was used

to generate the plot of ðD3
0Þ

0
in Fig. 6. The solid curve

corresponds to the maximum value of ðD3
0Þ

0
over the in-

terval 06 z6 1 as a function of r while the dashed curve

corresponds to the minimum value. It is seen that ðD3
0Þ

0

approaches a constant value of ðD3
0Þ

0 ¼ 	5:7 � 10	7 in

the intermediate matching region. Thus D3
0 ¼ ðGrPrÞ2 �

ðD3
0Þ

0
is the first nonzero value of Dk

0 and this term forces

the first convective contribution to the core region solu-

tions at Oðk4Þ since c4
0 ¼ D3

0. For completeness ð ~//3
0Þ

00
is

plotted in Fig. 7 for d ¼ 1. This temperature perturbation

is symmetric about the plane z ¼ 1=2 with the pertur-

bation rapidly decaying as r extends into the intermediate

matching region.

In principle, it is possible at this point to continue to

higher orders in k to determine values of Dk
0 for k > 3.

To do so, however, would require the numerical solution

of an ever increasing number of equations. Since the

effort required to solve these equations in the hot end

region is in effect comparable to the effort which would

be required to solve the full nonlinear equations for

convection in the entire annular enclosure, it has been

Fig. 5. The Oðk2Þ stream function perturbation in the hot end region when d ¼ 1: (a) ð ~ww2
2Þ

0
; (b) ð ~ww2

2Þ
00
.

Fig. 6. The maximum (solid line) and minimum (dashed line) of

ðD3
0Þ

0
as a function of r when d ¼ 1.
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decided to terminate the asymptotic analysis at Oðk3Þ.
By not proceeding beyond Oðk3Þ in the hot end region,

the asymptotic solutions in the core region are only

completely specified to Oðk4Þ.

4.4. The influence of varying d

The results presented in Fig. 6 show that D3
0 is non-

zero for the specific value of d ¼ 1. In order to show how

D3
0 varies as a function of d the numerical integrations

described above were repeated for values of d between

0.1 and 10. The results are shown in Fig. 8 which plots

ðD3
0Þ

0
a function of d where it is recalled that D3

0 ¼
ðGrPrÞ2ðD3

0Þ
0
. Fig. 8 shows that ðD3

0Þ
0

is a decreasing

functions of d. For a fixed (but small) value of �, the

asymptotic solutions for the case when d is of Oð1Þ
should approach the asymptotic solutions for the case

when C is of Oð1Þ when d becomes sufficiently large and

C becomes sufficiently small. Since the first convective

contribution in the core region occurs at Oð�2Þ for the

case when C is of Oð1Þ, it follows that the Oðk4Þ con-

vective contribution in the core region for the case when

d is of Oð1Þ must vanish for large d. This is indeed

consistent with the results plotted in Fig. 8.

5. Nusselt number

A fundamental quantity when examining natural

convection within enclosures is the Nusselt number, Nu,
which represents the ratio of the total rate of heat

transfer to some relevant conduction heat transfer scale.

For convection in the annular gaps considered here it is

the radial heat transfer between the inner and outer

cylinder which is of interest and Nu is defined as

Nu ¼ q�total

2phr1kðT1 	 T2Þ=‘
; ð111Þ

where q�total is the integrated radial heat transfer through

any concentric cylindrical shell between the inner and

outer cylinder and k is the thermal conductivity of the

fluid in the annular cavity. In terms of the nondimen-

sional variables defined in Eq. (5) the Nusselt number is

evaluated as

Nu ¼ r0

C

Z 1

0

ðGrPr�uh 	 oh
or
Þ jr¼r0 dz; ð112Þ

where d6 r0 6 d þ 1=�. Note that global conservation of

energy implies that Nu is independent of the choice of r0

used in Eq. (112).

For the case when � ! 0 with C is of Oð1Þ the core

region solutions can be substituted into Eq. (112) to give

Nu ¼ 1

C lnððC þ 1Þ=CÞ þ �2
ðGrPrÞ2

725760

2C þ 1

C3ðC þ 1Þ2

� 1

lnððC þ 1Þ=CÞð Þ4
þ Oð�3Þ: ð113Þ

In the limit as C ! 1 Eq. (113) approaches the corre-

sponding result obtained by CLI for convection in

shallow rectangular enclosures which is given by Nu ¼
1 þ ð�GrPrÞ2=362880.

For the case when � ! 0 with d is of Oð1Þ the core

region solutions can be substituted into Eq. (112) to give

Nu ¼ 	 1

C
k
�

þ c4
0k

4
�
þ Oðk5Þ; ð114Þ

where it is noted that the asymptotic parameter k is

negative with k ¼ 	1= lnððC þ 1Þ=CÞ. The quantity c4
0 in

Eq. (114) is a function of d with c4
0 ¼ ðD3

0Þ
0ðGrPrÞ2.

A detailed parametric study of Nu as a function of

Gr, � and d has been performed [7] and the results in-

dicate that the correlations given by Eqs. (113) and (114)

are only appropriate when GrPr�6 400.

6. Summary

This paper has presented asymptotic solutions for

convection in shallow cylindrical annuli in the limit as

the aspect ratio � ! 0. A key feature of the asymptoticFig. 8. The variation of ðD3
0Þ

0
with d.

Fig. 7. The OðGr2Prk3Þ temperature perturbation ð ~//3
0Þ

00
in the

hot end region when d ¼ 1.
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analysis is that the solutions at Oð�nÞ can only be com-

pletely determined by examining the governing equa-

tions at Oð�nþ2Þ. The asymptotic analysis was performed

for the case when � ! 0 with C of Oð1Þ and for the case

� ! 0 with d of Oð1Þ. The analysis involved matching

solutions in the end regions near the inner and outer

cylinders with solutions in a central core region. When

� ! 0 with d of Oð1Þ the asymptotic analysis is consid-

erably complicated by the fact that terms in the core

region solutions jump order when matching with solu-

tions in the hot end region. It has been shown that

curvature effects dramatically dictate the order at which

convection influences the core region solutions (i.e.,

there is a Gr number dependence). When � ! 0 with C
of Oð1Þ the first convective influence in the core region

occurs at Oð�2Þ. When � ! 0 with d of Oð1Þ the first

convective influence in the core region occurs at Oðk4Þ
where k ¼ 1= lnð�d=ð1 þ �dÞÞ, while small, is a much

larger asymptotic parameter than � as � ! 0. Thus the

asymptotic solutions are fundamentally different when

� ! 0 with C of Oð1Þ and when � ! 0 with d of Oð1Þ.

Appendix A. Higher order solutions when d is of Oð1Þ

For all n > 1 there are terms in the core region so-

lutions at Oð�2nÞ which jump to Oð1Þ when matching

with the hot end region solutions when d is of Oð1Þ. This

appendix lists the terms in the core region solutions for

/̂/2
2n, ŵw2

2n and /̂/3
2n which jump order for n ¼ 1; 2; 3. These

solutions are obtained following the same procedure

detailed in Section 3.1 for the case when when C ¼ Oð1Þ.
The solutions listed here omit the homogeneous terms in

the core region solutions (such as the ck2 ln r̂r þ dk
2 term in

Eq. (79)) which do not jump to Oð1Þ when matching

with the hot end region.

The terms which jump order for the temperature field

at Oð�2nk2Þ can be decomposed as

/̂/2
2n ¼ GrPrð/̂/2

2nÞ
0
; ð115Þ

where

ð/̂/2
2Þ

0 ¼ ð12z5 	 30z4 þ 20z3 	 1Þ=1440r̂r2; ð116Þ

ð/̂/2
4Þ

0 ¼ 	ð8z7 	 28z6 þ 28z5 	 14z2 þ 3Þ=10080r̂r4

ð117Þ

and

ð/̂/2
6Þ

0 ¼ ð4z9 	 18z8 þ 24z7 	 42z4 þ 54z2 	 11Þ=22680r̂r6:

ð118Þ

The terms which jump order for the stream function

field at Oð�2nk2Þ can be decomposed as

ŵw2
2n ¼ GrPrðŵw2

2nÞ
0 þ Grðŵw2

2nÞ
00
; ð119Þ

where

ðŵw2
2Þ

0 ¼ ð2z7 	 9z6 þ 12z5 	 21z2 þ 22z	 6Þz2=362880r̂r2;

ð120Þ

ðŵw2
4Þ

0 ¼ 	ð12z9 	 66z8 þ 110z7 	 462z4 þ 484z3

þ 275z2 	 504zþ 151Þz2=9979200r̂r4; ð121Þ

ðŵw2
6Þ

0 ¼ ð280z11 	 1820z10 þ 3640z9 	 30030z6

þ 31460z5 þ 70070z4 	 91728z3 	 45955z2

þ 92054z	 27971Þz2=756756000r̂r6; ð122Þ

ðŵw2
2Þ

00 ¼ ð10z6 	 45z5 þ 78z4 	 63z3 þ 21z2 	 1Þz3

=181440r̂r2; ð123Þ

ðŵw2
4Þ

00 ¼ 	ð120z9 	 660z8 þ 1430z7 	 1485z6

þ 660z5 	 66z3 	 2zþ 3Þz2=14968800r̂r4 ð124Þ

and

ðŵw2
6Þ

00 ¼ ð2100z11 	 13650z10 þ 35490z9

	 45045z8 þ 25025z7 	 4290z5 	 364z3

þ 910z2 	 103z	 73Þz2=1135134000r̂r6: ð125Þ

The terms which jump order for the temperature field

at Oð�2nk3Þ can be decomposed as

/̂/3
2n ¼ ðGrPrÞ2ð/̂/2

2nÞ
0 þ ðGr2PrÞð/̂/2

2nÞ
00
; ð126Þ

where

ð/̂/3
2Þ

0 ¼ 1=725760r̂r2; ð127Þ

ð/̂/3
4Þ

0 ¼ 	 ð15048z10 	 75240z9 þ 142560z8 	 118800z7

þ 36960z6 	 11088z5 þ 21120z4 	 11880z3

þ 1320z2 	 91Þ=479001600r̂r4; ð128Þ

ð/̂/3
6Þ

0 ¼ ð3882060z12 	 23292360z11 þ 53153100z10

	 52252200z9 þ 18918900z8 	 18378360z7

þ 38198160z6 	 13513500z5 	 16551990z4

þ 10581480z3 	 745290z2 þ 84173Þ
=490377888000r̂r6; ð129Þ

ð/̂/3
2Þ

00 ¼ 0; ð130Þ

ð/̂/3
4Þ

00 ¼ 	ð1320z10 	 6600z9 þ 12870z8 	 11880z7

þ 4620z6 	 330z4 þ 1Þ=239500800r̂r4 ð131Þ

and
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ð/̂/3
6Þ

00 ¼ ð36400z12 	 218400z11 þ 520520z10

	 600600z9 þ 300300z8 	 40040z6 	 910z4

þ 1820z3 þ 910z2 	 83Þ=27243216000r̂r6:

ð132Þ
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