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Abstract

This paper examines natural convection in the shallow annular gap between two concentric circular cylinders.
Asymptotic solutions are obtained in the limit as the aspect ratio e (defined as the ratio of the enclosure height to the
gap width) goes to 0. It is shown that the solution at O(€") can only be completely specified by examining the governing
equations at O(e"*?). Solutions are obtained, and Nusselt number correlations are presented, when the dimensionless
radius of the inner cylinder 6 is of O(1/¢) and when ¢ is of O(1). The results indicate that curvature effects profoundly
influence the nature of convection in shallow annular enclosures. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cormack, Leal and Imberger [1] (hereafter referred
to as CLI) used asymptotic analysis to examine natural
convection in a shallow rectangular cavity due to dif-
ferentially heated end walls. In particular, CLI examined
the case where the upper and lower boundaries were
perfectly insulating and where the height of the cavity
was much less than the distance between the hot and
cold end walls. CLI showed that the flow can be divided
into a central core region and two end zone regions. In
the central core the flow is parallel with fluid travelling
towards the cold end wall in the upper half of the cavity
and fluid travelling towards the hot wall in the lower half
of the cavity. The flow is symmetrically turned through
180° in the approximately square end zone regions. At
leading order, CLI showed that the temperature varies
linearly between the hot and cold end walls. The key
features of the asymptotic analysis performed by CLI
has been verified numerically [2] and experimentally [3].

The purpose of this paper is to extend the analysis of
CLI to the case of convection in a shallow annular gap
between two concentric circular cylinders maintained at
different temperatures. The objective is to examine the
influence of curvature on the nature of convection in
shallow enclosures. The term curvature is used here to
highlight the fact that in a cylindrical annulus the heat
transfer area increases in proportion to the radius when
moving from the inner cylinder to the outer cylinder,
whereas in a rectangular cavity the heat transfer area is

constant when moving from the hot end wall to the cold
end wall. It has previously been noted by de Vahl Davis
and Thomas [4] that curvature effects strongly influence
the nature of convection in tall cylindrical annuli.

Merker and Leal [5] (hereafter referred to as ML)
were the first to examine natural convection in shallow
cylindrical annuli. They suggested this as a model for the
circulation patterns in shallow lakes resulting from a
localized source of heat. ML used the same techniques
as CLI and examined the convection by dividing the
domain into a central core region and two end zone
regions near the inner and outer cylinders. During the
course of their analysis, ML make various assumptions
based on the results obtained by CLI. Not all of the
assumptions made by ML are valid, however, and a
revised version of the asymptotic analysis for natural
convection in shallow cylindrical annuli is presented in
this paper.

2. Mathematical model

A cross-section of the annular enclosure considered
in this paper is given in Fig. 1. The radius of the inner
cylinder is 7, and the radius of the outer cylinder is
ry = r; + £. The height of the enclosure is / and the as-
pect ratio is € = 4/¢. For the shallow enclosures of in-
terest here ¢ < 1. A measure of curvature in the annular
gap is given by I' = r1 /¢, and as I’ — oo the annular gap
approaches the two-dimensional cavity studied by CLI.
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Nomenclature
Cy, d, numerical constants when I ~ O(1) r curvature parameter, I’ = ry /£
ck, d*  numerical constants when 6 ~ O(1) 0 dimensionless radius of inner cylinder, 6 =
cp specific heat capacity at constant pressure ri/h
C*, D numerical constants when § ~ O(1) € aspect ratio of annular gap, e = h//¢
Gr Grashof number of cylindrical enclosure, n stretched asymptotic matching variable,
Gr = ga(T, — Th)h* /V? n=¢er
g coefficient of gravity 0 dimensionless temperature, 6 = (7" —T»)/
h height of annular gap (I - 1)
k thermal conductivity 0. conduction temperature profile defined by
L distance between inner and outer cylinder, Eq. (60)
{=r —r K thermal diffusivity
Nu Nusselt number A logarithmic temperature profile parameter,
p thermodynamic pressure A=1/In(ed/(1 + €d))
P* reduced pressure, P* = p* — p,gz* v kinematic viscosity
Pr Prandtl number, Pr = v/k 4 displacement  from  outer  cylinder,
r dimensionless radial coordinate, r = r*/h E=r—1/e-9
ri(r;)  radius of inner (outer) cylinder 0o reference density of Boussinesq system
T* temperature [0) perturbed temperature, ¢ = 0 — 0,
T\(T») temperature of inner (outer) cylinder 1 stretching factor used during asymptotic
u dimensionless radial velocity, wu=u*/ matching
(goh®(Ty — To) /vE) v cylindrical stream function
v dimensionless vertical velocity, v=v*/ w vorticity
(goch3(T1 — 1)/ M) . Superscripts
x dimensionless displacement from inner cyl- B . . .
inder, x = r — 0 ’ d1mens1ona1. Varlab‘le
. . . . hot end region variable
z dimensionless vertical coordinate, z = _ . .
. cold end region variable
Z*/h . . .
core region variable
Greek symbols
o thermal expansion coefficient
A third geometric parameter of the enclosure is 6 = r/h v u’ oy ou*
which is related to e and I' by I' = €6. The inner cylinder or* Oz
is maintained at a constant temperature 77 and the outer 1 opP* Rut 1 0wt u  ur (1
cylinder is maintained at a constant temperature 7, and = _P_o or "( a2 o 2 oz )7
it is assumed that 75 > T;. The top and bottom bound-
aries are assumed to be perfectly insulating and all sur- Lot v 1 oP* vt 1 ov %
faces are rigid no slip boundaries. The flow is assumed to Yo v o P_o oz + V(W o + @)
be axisymmetr.ic. . . —eu(T" — 1), 2)
The governing equations are the Boussinesq form of
the Navier—Stokes equations, along with the continuity l 0 (Fu) + o 0 (3)
equation and a conservation of thermal energy equation. r* or* oz*
The steady-state form of these equations in cylindrical
coordinates is given by and
L or+ oT* o’T 1 0T T 4
axis of symmetry 19 u or* v Oz* - K( or+2 7 or* + 0z*2 ) ( )

ZX=h|_ ...
z=10 e v, -~ ™ =T,
=1j . =1
=1 Lu msulatei 0=0
rt=r =1y
r=4 r=0+1/¢

Fig. 1. Schematic of annular enclosure.

In the above, u* and v* are the radial and axial velocities,
respectively, 7" is temperature, P* = p* — p,gz* is the
reduced pressure where p* is the thermodynamic pres-
sure, p, is the reference density, and g is the acceleration
due to gravity. The reference density has been chosen to
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correspond to the fluid density at the temperature 7> of
the outer cylinder. Gravity acts downwards parallel to
the axis of rotational symmetry. The kinematic viscosity
v, the thermal diffusivity x and the coefficient of thermal
expansion « are all assumed to be constant.

Egs. (1)-(4) are nondimensionalized using

r z* 0 T -1
y=— z=— =
h7 /’l’ T]—Tz’
“ and v = v

M:gazh3(T1 —T)/vt goh®(Ty — Th) /ve’

where 6 is the nondimensional temperature. This is the
same nondimensionalization used by CLI and ML and it
is used here to facilitate comparison with the previous
work.
With the introduction of the axisymmetric stream
function y, and vorticity w, defined by the relations
ou v 1 oy 1 oy

©=5% "% ‘T ra MU= (5)

the governing equations can be reduced to

Gré? (al// dw Y 6w+w %)

r

o =z oz or ¥ oz

_ (B 10 o To) 20 6)
— ¢ @r2+r or r2 0z or’ (
1% 10y 1%
ol Eertra s @ @
and
Grre (By 20 _0p 20\ @0 120 @0 o
r ordz ozor) o ror 02
The nondimensional boundary conditions are
0
,p:a_l}/f:(L 0=1 at r=29, 9)
oy 1
lﬂ—a—g—o at r7(3+€ (10)
and
oy 00
lp_g_&_o at z=0,1. (11)

In the above, Pr is the Prandtl number defined by
Pr=v/k and Gr is the Grashof number defined by
Gr = ga(T, — T)h* /v*.

In this paper the solution of Egs. (6)—(8) subject to
boundary conditions (9)—(11) will be obtained in the
asymptotic limit as e — 0 with both Gr and Pr fixed. As
noted previously by ML there are two cases of interest.
The first case is the limit as ¢ — 0 with I" of O(1). In this
case J, the radius of the inner cylinder, is of O(1/¢). The
second case is the limit as ¢ — 0 with 6 of O(1) so that I’
is of O(¢). In both cases the solution technique involves
using matched asymptotic expansions in order to match

end region solutions near the inner and outer cylinders,
to central core region solutions where radial changes
take place over distances of O(1/e).

3. The limit as e—0 with I" of O(1)

When I' is of O(1), the radial coordinate r is of
O(1/e) throughout the entire annular cavity and fol-
lowing ML it is convenient to make the transformation
r=0+x, so that 1/r=1/(6 +x) =¢/(I' + ex) with x
varying from x = 0 at the inner cylinder to x = 1/e at the
outer cylinder. The transformed equations become

Gre (a0 Wi, w o

I'+ex\Ox 0z Oz Ox I +ex Oz

7_@_’_ 62_w+62w N € do e

G ¢ ox2 0z I'+ex\ox TI'+e)’
(12)

e [Py e o Py

rm(W‘rma*@)*‘w (13)

and

60@

“w T rram a2
(14)

GrPreé? %60 oy 00 _620 €
Ox 0z 0Oz Ox

I+ ex 0z 0z o

3.1. Core region solutions

In the central core region radial changes occur over
distances of O(1/¢) which suggests the introduction of a
core variable x = ex. If 6,  and w are denoted by 0, lﬁ
and @ in the central core, the governing equations be-
come
Gré [ o> W owd @ Y
''+x\ox 0z 0z ox TI'+x oz

o I+x& (I'+x)?)
(15)
2.7 2 2.7 i
S () e

% %
ox  0z2

I+%02 T+x\02 T+%ox

and

G (0g 0 chai\ 0 (%0, 1 o

T+x\otoz ozox) o2 “\aw' rszox)
(17)

where the rescaling 1/; = e has been used to ensure a
balance at leading order in the stream function equation.
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Since it will be shown that streamlines from the core
region eventually enter the end regions this same scaling
for y will have to be used in the end regions. A solution
to these equations is sought using a regular asymptotic
expansion of the form

(6.6.0) =S¢ (6.,0,): (18)

i=0

The only boundary conditions available in the core re-
gion are Y = Oy/0z = 00/0z = 0 when z = 0, 1.
Substituting expansion (18) into Eqgs. (15)-(17) gives

a0, %y

® 2 (19
LR

I+% o2 ™ (20)

and

020,

g _ 21

52 =0 (1)

at leading order. The solution which satisfies the bound-
ary conditions 06,/0z = Oy, /0z =y = 0 when z =0, 1
is

690 Co
- _ 22
% I'+x’ (22)
N A B3 2
¢o=*C0(ﬁ*E+ﬂ) (23)
and

2
po— G0 (Z_z. 1
“’O_rﬂe(z 2*12)’ (24)

where ¢ is an undetermined function of %. Eq. (21) and
the boundary conditions imply that 06,/0z = 0 and for
convenience this constraint has be written in the form of
Eq. (22).

At this point ML make the assumption that the flow
in the core is parallel at leading order which requires the
undetermined function ¢, to be a numerical constant.
While this assumption is indeed true, the assumption
itself is unnecessary and should not be made. It will be
proven below that ¢, is indeed a numerical constant.

At O(e) the governing equations and boundary
conditions are identical to those at O(1). Thus the so-
lution is given by Egs. (22)-(24) with the subscript 0
replaced everywhere with 1.

At O(¢?) the energy equation is

I+x

ox Oz 0z Ox

7aZéO+ 1 80, %0,
T r+x e o2

(25)

which, upon substitution of the O(1) solution, becomes

(26)

GrPr(cO)2 AR z 1 dc 0%,
6 4 12

(r+x>\6 4 TTyz oz o2
This equation is integrated from z =0 to z =1 to give

L % _
I+xd

27)

which shows that ¢, is indeed a constant and conse-
quently Eq. (22) can be integrated to give

0y = coIn(I" + %) + do, (28)

where both ¢y and d, are constants which can only be
determined by matching the core solution with solutions
in the end regions. (Repeating the above procedure at
O(€’) will reveal that 0, = ¢ In(I" + %) + dy, where ¢,
and d; are numerical constants.)

With the aid of Eq. (27), Eq. (25) can be integrated
twice with respect to z to give
p GrPr(co)’ ( EAR A

m—&‘Fﬁ) +@2(X), (29)

(I + %)

where @,(x) is an undetermined function of x which can
only be determined by examining the energy equation at
O(€*). Upon substitution of known values, the energy
equation at O(e*) is given by

—2(GrPr)* (o)’ ( sz N 2 ) (23 2z )

Tty (10 8 2)s7 3 n

_ GrPr a_x/}()@_ ¢1GrPr a_z/}l_ coGrPr a_l/}2
(F'+%) 0z 0% (I'+%)?* 0z (I'+z)° @&
4GrPr(

W (2 2 2\ we.
120 48 72 0x2
e,
I'+x ox o2

(30)

Integrating Eq. (30) from z =0 to z=1 and imposing
the relevant boundary conditions yields

3?0, L1 20, 4(GrPr)’ (o)’ 4GrPr(co)’
o I+% 0 725760(I'+x)*  1440(I +%)*
(31)
which can be integrated twice with respect to x to give
GrPr (en)?
0,(X) =c;In(I' + %) + d> Jr%
725760(I" + %)
2
_ GrPr(c) - (32)
1440(T" + x)

where ¢, and d, are constants which must be determined
by matching with the end region solutions.
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By contrast, ML specified the value of ©, by as-
suming that 0, should be of the same form as the O(e?)
perturbation to the temperature field in the problem
studied by CLI. Using this assumption, ML incorrectly
conclude that ©,(%) = —GrPr(c,)’/1440(I" + £)*.

With 92 determined, the vorticity and stream function
equations at O(€?) can be combined and manipulated to
yield

e \12 242 16 14

2GrPr(cy)’ < AR AR 1 )
(I +x)

641/;272Gr(co)2 (25 524 132 2z )

120 48 72 1440

(GrPr)(co)’ 1
(I +x)* 362880

Cr. (33)

Integrating this equation four times with respect to z,
and using the boundary conditions 0y, /0z = ¥, = 0 at
z=0, 1 gives

+1§123 - %Zz> * <(G(rrPr+)2é§3 : 3621880 a CZ)
x(%—%—i—%). (34)

While it is possible to continue the analysis to higher
orders in e, this shall not pursued here. Of special note
however, is that the analysis has shown that for the case
of a cylindrical annulus, the core region flow becomes
nonparallel at O(e?). By contrast, the core region flow is
parallel to all orders in € in the two-dimensional cavity
studied by CLI. Thus, when I' is of O(1) as ¢ — 0,
curvature is seen to have a small but noticeable effect on
the flow in the core region. This observation foreshad-
ows the difficulties which will be faced when ¢ is of O(1)
as e — 0.

3.2. End region solutions

In the hot end region near the inner cylinder 0,  and
w are denoted by 6, Y and @, while in the cold end re-
gion, 0,  and @ are used. Since the streamlines in the
core are parallel at leading order, they must eventually
enter into the end regions. Hence ¥ and y must be re-
scaled as ¥ = ey and = eyf. The governing equations
in the hot end are Egs. (12)-(14) while the governing
equations in the cold end are obtained from Egs. (12)-
(14) by performing the transformation ¢ = 1/e¢ — x. The

variable ¢ measures the distance away from the cold
cylinder wall and is introduced here to facilitate
matching.

In order to match the end region solutions with so-
lutions in the core region, the flow variables are ex-
panded as

(é,lﬁ,a), é,&,@) - iei<9~i,l/;i,d)i,§i,l/;i,(f)i>. (35)

The matching conditions between the core and end re-
gion solutions are given by

iy (0.4,) = lim (0.9.). )
lim (0.4.6) < lim (0.6.4). 7

where the symbol <= is used to indicate that the
matching conditions apply in the limit as € — 0.

At O(1) the governing equations in the hot end re-
gion are

00,

=0 (38)
L[, Py ) -

_F( ox? + o2 | @o (39)

and

20, 0%,

et 0 (40)

When Egs. (38) and (40) are combined with the appro-
priate boundary conditions, it is seen that éo = 1. In the
cold end region the governing equations are the same as
Eqgs. (38)—(40) except that I' is replaced by I'+ 1 and
0/0x is replaced by —0/0¢. Applying the appropriate
boundary conditions, the leading order temperature field
in the cold end region is given by 8, = 0.

In order to apply conditions (36) and (37), 0y is ex-
panded in terms of the end region variables resulting in

colnr+co(%—%(%>z+m)+d0<:>1 41)

and

coln(r+1)+c0<— cc _l( € )2_...>
r+1 2\r+1

+dy <=0, (42)

which gives ¢ =1/In(I'/(I'+ 1)) and dy = —In(I'+
1)/In(I'/(I' +1)). The mismatch which occurs when
matching at this order has to be accounted for when
matching the solutions at higher order.

With the values of ¢y and dy now determined, it is
interesting to note that this leading order solution does
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not depend on either Gr or Pr, which indicates that the
flow is controlled solely by conduction and mass con-
servation at leading order.

At O(e) the energy equation in the hot end region
simplifies to
%0, %6,
o a2 =0 (43)
after substituting for the known value of ,. Integrating
this equation from z = 0 to z = 1 and using the fact that
00,/0z = 0 when z = 0, 1 yields

1 2%,

| G d =0 (44)

Integrating this twice with respect to x, and noting that
0, = 0 when x = 0 gives

1
/ é]dZ = ax, (45)
0

where a; is a constant of integration. This equation is
valid everywhere in the hot end, and in particular, it is
valid in the limit when the hot end approaches the core.
According to the matching condition (36)

~ ex 1 /ex\2
0 = T +c11nF+c1<r 2( ) +~~>+d1,
(46)

where the first term is the result of the mismatch at
leading order. Substituting this expansion into Eq. (45)
and retaining only the leading order terms gives

%-’-Cl lnI"—i—d] = dapx. (47)

Repeating the above analysis in the cold end region re-
veals

Fcf CFan(l 1)+ dy = axé, (48)
where a, is an undetermined constant. Combining Egs.
(47) and (48) gives a; =¢o/I’, ay = —co/(I'+1) and
¢; = d; = 0. Thus there is no additional mismatch at this
order, and the end region solutions are seen to be
é] = C()X/F and §1 = *Coé/(['ﬁ» 1)

At O(€?) the energy equation in the hot end region
can be written as

—_— = 49
o r oz r? (49)
by first substituting for the known values of 0, and 0,.
Integrating Eq. (49) from z=0 to z =1 and applying
the appropriate boundary conditions yields

! 6292 dz = Co

= -2 50
o ox? r? (50)

Integrating Eq. (50) twice with respect to x and applying
the boundary conditions yields

/ szzf——x + asx, (51)

where a; is a_constant of integration. The matching
condition for 0, is

0, <= —Fx JrczlnF+dz+m

NEREN RN
120 48 72 1440

as x — oo, where the x*> term is the result of the mis-
match at leading order, and higher order terms in € in
the expansion of 6, have not been retained. Applying
this matching condition with Eq. (51) yields

(GrPr)*(co)’
7257601

= —%xz + asx. (53)

(GrPr)* (o)’
72576012

26 2x +cInl’+d, +

When the same analysis is repeated in the cold end re-
gion, the corresponding result is

Co
S In(l d
2(1“+1)2£f FanfEld
(GrPr)*(co)’ Q.
_ . 54
7257601 + 17 2(F+ 17" aic (549

Combining the above two equations gives a3 = a4 = 0 as
well as

(GrPr)(cy)’ 1 1 r
= 7725760 ((r+1)zﬁ>/ln<r—+l)

(55)
and
(GrPr)’(co)’ [ InI' In(I'+1) r+1
d, = 735760 ((F+1)2_ 2 )/hl(T)
(56)

With ¢, and d, known, the core solution has been
completely determined to O(e?) and this solution will be
used in Section 5 to determine the total rate of heat
transfer (and hence the Nusselt number) between the hot
inner cylinder and the cold outer cylinder.

At this point it would be possible to write equations
to explicitly solve for (o, Y\, ¥, 02) and (o, ¥\, ¥,, 02)
however this shall not be pursued here other then to
mention that the equations and their solution technique
are essentially equivalent to the corresponding equations
derived and solved numerically by CLI for the case of
natural convection in a shallow rectangular cavity.
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4. The limit as e—0 with J of O(1)

The asymptotic analysis when 6 is of O(1) is con-
siderably more difficult than when I' is of O(1). The
difficulty results from differences in the magnitude of
curvature effects within the enclosure since when ¢ is of
O(1), r varies from being of O(1) near the inner cylinder
to being of O(1/e) near the outer cylinder. In their
original paper, ML note the difficulties associated with
the asymptotic analysis when d is of O(1), however, they
incorrectly conclude that the solutions in the core region
are identical to O(e?) for both the cases when & is of
O(1) and when I' is of O(1). In this section it will be
shown that curvature effects profoundly influence the
asymptotic solutions when 6 is of O(1) and that these
solutions are indeed distinct from the solutions when I’
is of O(1).

The analysis begins by writing the governing equa-
tions for the core region and for the two end regions. In
the core region the solutions will be identified with su-
perscript s, while in the hot end regions s are used and
in the cold end region ~’s are used. As for the case when
I' is of O(1), the stream function is rescaled in each of
the regions as l// = ey, x// = e and Y = e. This rescal-
ing of the stream function forces a rescaling of the
vorticity in the hot end region of @ = ew to ensure a
balance at leading order. Upon substitution of l/; = ey
and @ = ew into Egs. (6)—(8), the governing equations in
the hot end region become

_<w_ww_w+waw>

=% ror Rl o (57)
1% 10y 1%

co Ao T ® (58)
and

GrPr [0Y 00 oy o0\ 90 100 0

: (ar§‘$5>@+;5+@ 39)

As noted by ML, the absence of a small parameter in
Egs. (57)—(59) highlights the difficulty of the asymptotic
analysis when 6 is of O(1). If the analysis where per-
formed using asymptotic expansions of the form of sum
(18), then the full nonlinear vorticity, stream function
and energy equations would have to be solved at each
order in e. To avoid having to solve the full nonlinear
equations, a small parameter can be conveniently in-
troduced into Egs. (57) and (58) by making the substi-
tution

0=¢+0, (60)

where

In(er/(1 + €d))
In(ed/(1 + €9))

is the conduction temperature profile which would result
in the absence of convection (Gr = 0). This substitution
introduces the asymptotically small parameter

A:l/ln<lj_75€5)~1/lne (62)

and it is motivated by the observation that the leading
order temperature field for the case when I' is of O(1) is
precisely 0 = 6.. The transformed vorticity and energy
equations in the hot end region become

, (%a_w_w_mww)

Oor 0z 0Oz Or r Oz

X0 1d0 @ e 1 0
~ e At (63)

and
GrPr %%_%% GrPr@_l/;
r or 0z 0z Or T2 0z
P¢ 103 &
_e 1 ¢+ d’. (64)

oz r or 0z2

The governing equations in the core region are ob-
tained from Egs. (6)-(8) by introducing the scaling
1/; = ey and transforming the radial coordinate as 7 = er.
Upon substituting using Eq. (60), the core region equa-
tions become

Gré? (a¢ 0 oY @ aw)

o7 oz oz or ez

r
Fo 100 @\ Pd i 0
— 2 -
_E<6ﬂ+ o r2>+az2 o (65)
1% 10\ 18% R
of OV 1 i
‘ <f R af) Faz ¢ (66)
and
GrPré (0 0 0y 0 )zGrPrﬁ_ll;
P\ e o) i @
Pd 104\ 3¢
— 2 _ —_
- (6?2+f o | T (67)

The governing equations in the cold end region are ob-
tained from Egs. (6)—(8) and (60) by using the scaling
Y = ey and by making the transformation £ =06+ 1/
€—r.

The form of the governing equations when ¢ is of
O(1) suggests seeking asymptotic solutions using an
expansion of the form
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=

TS CE) )

i=0 =1

in the core region with identical expansions in the hot
and cold end regions. In order to obtain asymptotic
solutions, the inner summation must be performed be-
fore the outer summation.

Solution methodology. The objective of the analysis is
to determine the first convective contribution (i.e., Gr
number dependence) to the temperature and stream
function fields in the central core region. To do this the
governing equations are solved in the central core region
and matched with solutions in the end regions. It will be
shown that the first convective contribution in the cen-
tral core region occurs at O(2*). Due to the need to solve
the governing equations in the hot end region numeri-
cally, matching is not performed beyond this order.

4.1. Core region solutions

The solution of the governing equations in the core
region when ¢ is of O(1) is very similar to the solution of
the governing equations when I' is of O(1) and only the
solutions will be presented here.

At O(/") the solutions are

o =ckinp+dt (69)
and
4 3 2
T (k zZ_zZ. .z
W=+ o555+ 5) (70)

where ¢ and d! are unknown numerical constants which
must be determined by matching with the end region
solutions and d;; =1 when k=1 and J,; =0 when
k> 1.

At O(e/*) the solutions are

¢ =ckinp+dt (71)
and
4 3 2
k(%2 Z =
Vi = C‘<24 12*24)’ (72)

where c’;’ and d{‘ are unknown numerical constants which
must be determined by matching with the end region
solutions.

At O(e2)) the solutions are

) GrPr (2 21
F_ ok n 4 df 4+ o 0 a2 T 79 T Taa0
¢y =cInft+dy +e— (120 87 1440>

L (GrPr)? ]
+f2k< 7 725760) (73)

and

r 2GrPr 1 (1 1 2 7 11 1
k k 9 8 7 4 3
1112*6275(62 N +§Z _EZ +?Z _522)
2Gr 1 (10 26 7 1
k 9 8 7 6 5 3
+ g 2 g(?z -5z +?z -7z +§z —§z)
+ 2f2k(Ar )2 1 —Cé i_i_,_i ,
72 725760 24 12 24
(74)

where ¢! and d¥ are unknown numerical constants which
must be determined by matching with the end region
solutions,

e’; =041 + c’éfl + Z g (010 +€5)s

m+n=k

A= e Ga+cp

m+n=k

and

g =" (Oim+c))(Ora+ch)
m+n=k

An examination of Egs. (73) and (74) reveals that
some of the terms in the asymptotic expansion in the
core region jump order when matching with solutions in
the hot end region. To accommodate this, the matching
is performed using an intermediate variable n = re! =
7e*~1, where 0 < y < 1. (See Hinch [6] for details.)
Matching is performed by expressing the core region
solutions and the hot end region solutions in terms of #
and then ensuring that the solutions have the identical
form throughout the intermediate matching region (see
Fig. 2). Observing that

1! (75)

it follows that the 1/7* terms which occur at O(e?) in the
core region must be matched with 1/r? terms at O(1) in
the hot end region. To complicate matters further it can
be shown that for all » > 1 there are terms in the core
region solutions at O(e*") which vary as 1/7" and hence
jump to O(1) when matching with solutions in the hot

end region.

intermediate matching region
— g reg

hot cold
1 Cen[ral o e“d

r=46 r=0+1/e

Fig. 2. Intermediate matching region when ¢ — 0 with ¢ of
O(1).
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4.2. The cold end region

The temperature matching condition between the

core region and the cold end region is given by
lim ¢! < limg¢f, (76)

F—14€d ¢—o0
where it is noted that when matching with the cold end
region no terms in the core region solution jump order.
For the current purposes matching will only be per-
formed for n = 0.

At O(JF) (for all k) the energy equation in the cold
end region gives

e, 24

652 0z2 =0, (77)
while the vorticity equation gives
Oy _

Combining Egs. (77) and (78) with the boundary con-
ditions a¢0/az =0whenz=0,1and ¢} = 0 when & =0
requires ¢0 =0 for all k. The solution to the energy
equatlon at O(1") in the core region is simply qbo

ckIn? + d}. Expressing ¢0 in terms of £ and applying the
matchlng condmon (76) yields

chIn(1 + €(6 — €)) + di <= ¢ =0, (79)
which can be expanded to give

(6 -8 —1/22(0 — &P +--) +df =0, (80)
Hence to leading order in ¢, df = 0 for all k.

4.3. The hot end region

The energy equation in the hot end region at O(/¥)
can be written as

2iy 100 @0
or? +; or + 0z2 =/ 2), (81)

where f(r,z) is a forcing function, which can be written
explicitly by examining Eq. (64).

The general solution to Eq. (81) is
$6 = (80D + ($0)un (82)

where ((;Nﬁg)h is the homogeneous solution to Eq. (81)
with f(r,z) replaced by 0 and (ég)nh is a particular so-
lution to nonhomogeneous Eq (81) when f(r,z) # 0.
The boundary conditions on ¢¢ are ¢f =0 wnen r=29
and 3¢f/0z=0 when z=0,1. Moreover (¢), and
(¢F),, must be of the correct form to match with solu-
tions from the core region. Noting from Section 4.1
above that the core region solutions behave as the sum
of logarithmic terms, constant terms and terms which

jump order with a radial dependence of 1/ in the in-

termediate matching region, it follows that the hot end
region solutions must display the same behaviour in the
intermediate matching region. The homogeneous solu-
tion to Eq. (81) which satisfies all of the boundary
conditions and which is of the correct form to match
with the core region solutions is simply

o = CiIn(r/9), (83)

where Cf is a numerical constant which must be deter-
mined by matching. Thus, to ensure that the hot end
regions solutions are of the correct form to match with
the core region solutions it follows that the particular
nonhomogeneous solution to Eq. (81) must behave as

(d;/(g)nh Aand Dg + ‘](])C(n Z) (84)

throughout the intermediate matching region where Df
is an as of yet undetermined numerical constant and
where J¥(7,z) is used to denote the sum of terms which
jump to order O(2*) when matching between the core
region and the hot end region.

4.3.1. The logarithmic and constant terms

Matching the logarithmic and constant terms in the
core region with the corresponding terms in the hot end
region and is performed using the intermediate variable
n = re’ = fe*~!, where 0 < y < 1. The matching condi-
tion is
S A (ChIn(r/8) + D) = > (cg In7 + dg), (85)

k=1 k=1

which is expanded to yield

CoxAln(1/€) + (CyIn(n/3) + Dy) A+ Coz2° In(1/€) +
= bz~ Diln(1/e) + (chny +d})

+(r— D2 I(1/e)+---. (86)

By expanding Eq. (62) in terms of € as ¢ — 0 it can be
shown that

Aln(1/€) = =1 4 A(Ind — (d) %(65)2 —%(65)3 — ).
(87)
Thus, to leading order in ¢, AIn(1/e) = —1 4 Alné and

when this substitution is made into Eq. (86) and the
coefficients of the powers of 1 are compared it is seen
that

Cor=colx—1) (88)
and

CiIn(n/3) + Df + ClyInd — CE'y,
=cinp+d +ci(x—1)Ids—c M (x-1), (89)
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for k > 1. Since Eqgs. (88) and (89) must be satisfied for
all values of 0 < y < 1 it follows that C} = ¢} =0, and
that Ck = ¢k with Df = d + ¢t when k > 1. Matching
in the cold end region hdS shown that df = 0 for all k so
it follows that &' = C&*! = Df.

4.3.2. The nonhomogeneous solutions

While the above analysis has shown how the con-
stants Df are matched with solutions in the core region,
the numerical value of these constants can only be de-
termined by calculating the nonhomogeneous solutions
noted in Eq. (84). The nonhomogeneous solutions are
obtained using numerical integration and results are
presented in this section for the particular value of
o=1.

The energy equation at O(4) in the hot end region is

8y, 108 6
or r or 02

(90)

and the only solution which satisfies the appropriate
boundary conditions and which can be matched with the
core region solutions is ¢} = Cl In(r/3). (At O(2) there
are no terms in the core region solutions which jump
order) Noting from above that C! = 0 it follows that
gbo = 0. Since Eq. (90) is homogeneous it follows that
there is no nonhomogeneous solution and that D} = 0.
This in turn implies that C3 = ¢3 =0 so that the ho-
mogeneous solution at O(4%) vanishes.

The vorticity and stream function equations at O(4)
can be combined to give

@10 1 B\E 10 18
o ror rr 02 rorr P2or roz2)70
=-1 o1)

The boundary conditions on l//0 are ) = Oy} /0z =
when z=0, 1 and 1//(J = 61//0/6r =0 when r= 5
Throughout the entire matching region, l//o must satisfy

Yo = — (/24 -2 /12 +2/24). (92)

Eq. (91) is clearly related to the biharmonic equation
solved by CLI in relation to convection in shallow
rectangular enclosures. Below it will be shown that the
solution of :,00 is required in order to determine higher
order approximations to l// and ¢ and the approach
adopted here is to use a numerical technique to solve Eq.
(91). CLI also employed a numerical technique to per-
form the matching during their asymptotic analysis and
the analysis which follows is closely related to that of
CLI. The solution of Eq. (91) is plotted in Fig. 3 for the
specific value of 0 = 1. It is seen that the leading order
stream function smoothly turns the flow through 180°,
in a similar manner to that observed in convection in
shallow rectangular enclosures (cf. CLI, Fig. 2).

1 038
1 06
4
—2.18 x 1073 1 04
“L7Ax10°
e
136 x 10" 0.2

Fig. 3. Leading order stream function 1/;(1) in the hot end region
when 6 = 1.

The numerical solution to Eq. (91) was obtained
using a second order central difference formulation. The
matching condition (92) was applied by setting 1/;(') =
—(2*/24 = 22/12 4+ 22/24) and Oy /or =0 at a radius
r = 0 + dr. Solutions were calculated with dr = 4, 6 and
8, and it was observed that the results were insensitive to
the choice of dr. All of the numerical solutions discussed
in this paper were first calculated using a uniform grid
with 201 (radial) by 51 (vertical) nodes and then using a
uniform grid with 401 by 101nodes. As discussed below,
the key output from the full series of numerical inte-
grations is the value of D} and this value varied by less
than 1.5% when comparing between the two grids.

The energy equation at O(/?) simplifies to

GrPr Y}

Pdy 10y Py
- [ 93
or? + r or + 0z2 2 0z (93)

subject to the boundary conditions qgo =0 when r =9
and 6¢0/©z =0 when z = 0, 1. The matching condition
for qbo is

¢t = C2In(r/d) + D2 + (ezqsg S S LY s I )
(94)

throughout the intermediate matching region where it is
noted that the homogeneous part of the solution (¢Z), =
C?In(r/d) can in fact be neglected since C3 =0. Ap-
pendlx A lists the functions ¢2n forn=1,2, 3

The value of D} can be determined by mtegrating Eq.
(93) from z =0, 1 to give

Yoy, 104 24
=0 5
,/0<6r2+r6r+622 dz=0, (93)
where it is noted that this equation is valid in the hot end
region and throughout the entire intermediate matching

region. Since (133 =0 when 6 =0, Eq. (95) can be inte-
grated twice with respect to r to give

/ F2dz = (C2) In(r/5), (96)
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where (C2)' is a numerical constant of integration. Since
it can be shown that fo ¢3,dz = 0 for all n, substitution
of matching condition (94) into Eq. (95) yields (C3)' =
C? and more importantly D3 = 0. This implies that
Ci=c}=0.

By examlmng the form of Egs. (93) and (94), it is seen
that ¢; can be decomposed as d~>0 GrPr(qS(z))' where
(¢3)' satisfies

F(dy) 130, () _ 13y (97)

or? r or 0z2 2 0z

The matching condition for (¢0) is obtained from Eq
(94) by setting C2 = D3 = 0. As noted in Appendlx A @2
can be written as ¢?, = GrPr(¢?2,) where (¢2,) is inde-
pendent of Gr and Pr. Eq. (97) was solved using a second
order central difference formulation using the same nu-
merical grids which were employed to calculate |//0
During the numerical integration, the sum given in Eq.
(94) was truncated at O(e'%). The numerically deter-
mined solution of Eq. (97) is plotted in Fig. 4 for § = 1.
It is seen that the O(4%) correction to the temperature
field leads to positive perturbations in the top half of the
enclosure and negative perturbations in the bottom half
of the enclosure.

The vorticity and stream function equations can be
combined at O(/?) to give

a_2+li_l+i la_z_l 0 +1 62 lﬁ

oz ror r2 0z ror2 Ror ro2)’o

_ 0o (ciieal_cijeal alail)
or or Oz 0z Or r Oz

with Y2 = 0y /0z = 0 when z = 0, 1 and /2 = a&é Jor =
0 when r = 4. Since it has been shown that ¢2 = 0 and
hence that zpo = 0, it follows that the matching condition
for Y2 is the sum of the terms in the solutions for 2,
which jump to O(2?) when matching with the hot end
region. By examining these core region solutions and by
examining Eq. (98) it is seen that % can be decomposed

W
—2.37 % 107
L

1 2

7.10 x 107
0.8

—4
118x10 J 6

0.4

—1.18 x 107

0.2
—7.10 x 107°

=W

Fig. 4. The O(4?) temperature perturbation @2 in the hot end
region when 6 = 1.

as Y2 = GrPr(Y2) + Gr(y2)", where () and (42)"
satisfy

6_2+li_l+62 16_2_l3 laz (l//)
o2 ror 0z2 rorr 2 6}’ r 022 0

()
_ 99
or (99)
and
G101 Y18 10 18
o2 ror r2 0z rort r? Or 7 oz2 0
- Y, day, a'/;o day | @ 6%
n r<6r 0z Oz 6r+r oz )’ (100)

respectively. The matching conditions for (¥2) and
(Y3)" are given by

() = EW3) + ) + W) + -+ (101)
and
)" = )" + ()" + )" + -, (102)

where it is noted that (nﬁﬁn)’ and (l/}gn)" are listed in
Appendix A for n = 1,2, 3. The solution of Egs. (99) and
(100) subject to the appropriate boundary and matching
conditions have been obtained numerically and the re-
sults for the specific value of § = 1 are plotted in Fig. 5
where it is noted that the summations in Eqgs. (101) and
(102) were truncated at O(e'?). It is seen that the (/2)’
perturbation consists of 4 counter-rotating cells with
two of the cells confined near the inner cylinder and the
other two cells extending into the intermediate matching
region. The (y2)" perturbation consists of two counter-
rotating cells which only extend a short distance from
the inner cylinder.

The energy equation at O(/?) in the hot end region is
given by

g, 108 )

orr r or 0z2

_artr (W%_W&ﬁ> .

GrPr oy
2 oz’

r or 0Oz 0z Or (103)

subject to the boundary conditions 430 =0 when r =9
and 6(150 /0z =0 when z = 0, 1. The matching condition
for ¢’o

by = D} +EP3+ ¢ hy + e+, (104)

where it is noted that previous matching has shown that
C}=c¢} =0 so that the homogeneous solution (¢3),

vamshes The ¢>2n terms represent core region solutions
which jump order when matching with the hot end re-
gion. The matching condition and Eq. (103) are such
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Fig. 5. The O(/?) stream function perturbation in the hot end region when & = 1: (a) (J2)'; (b) (J2)".

that ¢} can be decomposed as b2 = (GrPr)*(3) +
(Gr?Pr)(;)", where (¢;) and (¢;)" satisfy

R, 10060, T

or? r or 0z2
_L (W30 w3 ) LA) s
r\ or 0z 0z Or r2 0z
and
@) LA F@) LA 0
or? roor 0z2 2 0z
respectively. The matching conditions for (433)’ is
(¢) <= (D)) +€(¢3) + € () + () + -
(107)
and the matching conditions for (43)" is
(@) <= (D))" +€(3)" + € (6)" + €(dg)" + -+,
(108)

where it is noted that D} = (GrPr)*(D})' + (Gr*Pr)(D})"
and that (¢3,)" and (¢3,)" are listed in Appendix A for
n=1,23.

Following CLI, the unknown constant (D})" is de-
termined as part of the solutions to Eq. (105). In par-
ticular matching condition (107) is replaced by
a((i;?))lfa 2/ 13\ 4073\ 6/ 23\
SO = (COY G G ) (109)
and the value of (D])" is determined from the numerical

solutions of Eq. (105) by defining
(43) = (83) = (€(3) + €' (dy) +¢*($5) +---)  (110)

and then examining the value of (43)" throughout the
intermediate matching region. In the numerical imple-
mentation the summations in Egs. (109) and (110) were
truncated at O(e!®). The value of (D})" is determined

using the same procedure which led to Egs. (95) and
(96). This gives (D3)" = 0 for all 4.

The numerical solution for (¢;)' when & = 1 was used
to generate the plot of (43) in Fig. 6. The solid curve
corresponds to the maximum value of (4;)" over the in-
terval 0 <z <1 as a function of r while the dashed curve
corresponds to the minimum value. It is seen that (D)’
approaches a constant value of (D3) = —5.7 x 1077 in
the intermediate matching region. Thus D} = (GrPr)* x
(D})’ is the first nonzero value of D4 and this term forces
the first convective contribution to the core region solu-
tions at O(4*) since ¢} = D}. For completeness (¢;)" is
plotted in Fig. 7 for 6 = 1. This temperature perturbation
is symmetric about the plane z = 1/2 with the pertur-
bation rapidly decaying as r extends into the intermediate
matching region.

In principle, it is possible at this point to continue to
higher orders in 4 to determine values of Df for k > 3.
To do so, however, would require the numerical solution
of an ever increasing number of equations. Since the
effort required to solve these equations in the hot end
region is in effect comparable to the effort which would
be required to solve the full nonlinear equations for
convection in the entire annular enclosure, it has been

0-0 T T T

(A x 108

L 1 L

1.0 2.0 3.0 4.0
T

5.0

Fig. 6. The maximum (solid line) and minimum (dashed line) of
(43 as a function of r when & = 1.
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Fig. 7. The O(Gr2Pr/’) temperature perturbation (¢3)” in the
hot end region when 6 = 1.

decided to terminate the asymptotic analysis at O(2?).
By not proceeding beyond O(2?) in the hot end region,
the asymptotic solutions in the core region are only
completely specified to O(/*).

4.4. The influence of varying 6

The results presented in Fig. 6 show that D} is non-
zero for the specific value of ¢ = 1. In order to show how
D} varies as a function of § the numerical integrations
described above were repeated for values of § between
0.1 and 10. The results are shown in Fig. 8 which plots
(D})' a function of § where it is recalled that D] =
(GrPr)*(D})'. Fig. 8 shows that (D}) is a decreasing
functions of 6. For a fixed (but small) value of ¢, the
asymptotic solutions for the case when J is of O(I)
should approach the asymptotic solutions for the case
when I' is of O(1) when J becomes sufficiently large and
I' becomes sufficiently small. Since the first convective
contribution in the core region occurs at O(e?) for the
case when I is of O(1), it follows that the O(.*) con-
vective contribution in the core region for the case when
0 is of O(1) must vanish for large J. This is indeed
consistent with the results plotted in Fig. 8.

5

10~ T

—6

10
—(Dyy

-7

10

10

Fig. 8. The variation of (D})" with 4.

5. Nusselt number

A fundamental quantity when examining natural
convection within enclosures is the Nusselt number, Nu,
which represents the ratio of the total rate of heat
transfer to some relevant conduction heat transfer scale.
For convection in the annular gaps considered here it is
the radial heat transfer between the inner and outer
cylinder which is of interest and Nu is defined as

qrotal

N = (T, — 1)) (1)
where ¢}, is the integrated radial heat transfer through
any concentric cylindrical shell between the inner and
outer cylinder and k is the thermal conductivity of the
fluid in the annular cavity. In terms of the nondimen-
sional variables defined in Eq. (5) the Nusselt number is
evaluated as

/ o1
Nu=" /0 (Grbreat) — 20 |y &, (112)
where 6 < <0+ 1/e. Note that global conservation of
energy implies that Nu is independent of the choice of »
used in Eq. (112).

For the case when ¢ — 0 with I" is of O(1) the core
region solutions can be substituted into Eq. (112) to give

B 1 (G 2l +1
T TIn((T+1)/T) " 725760 (1 + 1)}
oL

(In((I'+ 1)/T))

Nu

o(é). (113)

In the limit as I' — oo Eq. (113) approaches the corre-
sponding result obtained by CLI for convection in
shallow rectangular enclosures which is given by Nu =
1 + (eGrPr)* /362 880.

For the case when ¢ — 0 with ¢ is of O(1) the core
region solutions can be substituted into Eq. (112) to give

Nu:—%(ﬂch‘)JrouS), (114)
where it is noted that the asymptotic parameter 1 is
negative with 2 = —1/In((I' + 1)/I'). The quantity c{ in
Eq. (114) is a function of & with ¢} = (D3) (GrPr)’.

A detailed parametric study of Nu as a function of
Gr, € and 0 has been performed [7] and the results in-
dicate that the correlations given by Eqs. (113) and (114)
are only appropriate when GrPre < 400.

6. Summary

This paper has presented asymptotic solutions for
convection in shallow cylindrical annuli in the limit as
the aspect ratio ¢ — 0. A key feature of the asymptotic
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analysis is that the solutions at O(¢") can only be com-
pletely determined by examining the governing equa-
tions at O(e"*?). The asymptotic analysis was performed
for the case when ¢ — 0 with I of O(1) and for the case
e — 0 with 6 of O(1). The analysis involved matching
solutions in the end regions near the inner and outer
cylinders with solutions in a central core region. When
e — 0 with 6 of O(1) the asymptotic analysis is consid-
erably complicated by the fact that terms in the core
region solutions jump order when matching with solu-
tions in the hot end region. It has been shown that
curvature effects dramatically dictate the order at which
convection influences the core region solutions (i.e.,
there is a Gr number dependence). When € — 0 with I’
of O(1) the first convective influence in the core region
occurs at O(e*). When e — 0 with 6 of O(1) the first
convective influence in the core region occurs at O(1*)
where 4= 1/1In(ed/(1 + €d)), while small, is a much
larger asymptotic parameter than e as ¢ — 0. Thus the
asymptotic solutions are fundamentally different when
e — 0 with I" of O(1) and when ¢ — 0 with ¢ of O(1).

Appendix A. Higher order solutions when 4§ is of O(1)

For all n > 1 there are terms in the core region so-
lutions at O(e*") which jump to O(1) when matching
with the hot end region solutions when ¢ is of O(1). This
appendix lists the terms in the core region solutions for
#3,, 2, and $3, which jump order for n = 1,2,3. These
solutions are obtained following the same procedure
detailed in Section 3.1 for the case when when I' = O(1).
The solutions listed here omit the homogeneous terms in
the core region solutions (such as the ¢£ In# + d¥ term in
Eq. (79)) which do not jump to O(1) when matching
with the hot end region.

The terms which jump order for the temperature field
at O(e¥")?) can be decomposed as

2 = GrPr(¢2), (115)
where
(¢2) = (122° — 30z* 4 202° — 1)/144072, (116)

(¢2) = —(82" — 285 + 282° — 142% + 3)/10080#
(117)

and

(¢2) = (42° — 182" + 2427 — 422* + 542 — 11)/226807°.
(118)

The terms which jump order for the stream function
field at O(e>"/?) can be decomposed as

U3, = GrPr(y3,) + Gr(ys,)", (119)

where

W2) = (227 —92° + 122° — 212° 4 22z — 6)2% /3628807,
(120)

W2) = —(122° — 662° + 11027 — 462" + 4847
+ 27522 — 504z 4+ 151)22/9979200#,  (121)

W2) = (280z'" — 1820z'° 4 36402° — 300302°
+314602° + 70070z* — 917282 — 4595522
+ 92054z — 27971)2% /756 756 0007° (122)

()" = (102° — 4525 + 782" — 632 + 2122 — 1)}
/1814407, (123)

W2 = —(1202° — 6602° + 143027 — 148525
+6602° — 66z° — 2z 4 3)2% /14968 8007 (124)

and

W2)" = (2100z" — 136502"° + 354902°
— 450452° + 2502527 — 42902° — 3642°
+9102% — 103z — 73)22 /11351340007, (125)

The terms which jump order for the temperature field
at O(e>2*) can be decomposed as

$3, = (GrPr)*($3,) + (G Pr)(¢3,)", (126)
where
(¢3) = 1/7257607, (127)

(¢3) = — (150482'° — 752402° + 142560z° — 11880027
+36960z° — 110882° 4 21120z* — 118802°
+ 132022 — 91)/479001 6007, (128)

(63) = (388206022 — 23292360z"" + 53153100z
— 522522002 + 18918900z° — 18378360z
+381981602° — 135135002° — 16551 990z*
+10581480z° — 7452902% + 84173)
/490377888 0007°, (129)

($3)" =0, (130)
(¢3) = —(13202" — 66002° + 12870z° — 118802
+4620z° — 330z* +1)/239500800#*  (131)

and
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(63)" = (36400z'> — 218400z" + 5205202
— 600600z° + 300300z — 400402° — 910z*
+ 18202* + 910z* — 83)/272432160007.
(132)
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